Asad Masood, Naeem Ahmed, MF Mohd Razip Wee, Muhammad ASM Haniff, Ebrahim Mahmoudi, Anuttam Patra, Kim S Siow
{"title":"Pulsed plasma polymerisation of carvone: characterisations and antibacterial properties","authors":"Asad Masood, Naeem Ahmed, MF Mohd Razip Wee, Muhammad ASM Haniff, Ebrahim Mahmoudi, Anuttam Patra, Kim S Siow","doi":"10.1680/jsuin.22.00042","DOIUrl":null,"url":null,"abstract":"The production of suitable coatings with excellent antibacterial performance has now become a viable technique for enhancing the functional qualities of various biomedical materials. Here, pulsed plasma polymerisation was used to produce an antibacterial coating from the carvone oil of the spearmint plant. The coating films have adjustable chemical and physical properties based on the deposition parameter – that is, duty cycle (DC). The static water contact angle (WCA) values of pulsed wave (PW) plasma-polymerised carvone (ppCar) increase with the increase in DC. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy showed that the molecular structure of carvone is less fragmented, retaining moieties associated with C–O and C=O when the DC is reduced. These C–O and C=O moieties likely reduced the measured static WCA. This surface chemical composition with predominantly C–O and C=O also showed a stronger bactericidal effect, based on the biofilm assay with bacteria (Escherichia coli and Staphylococcus aureus), compared with those coatings with C–C and C–H produced at a higher DC. As shown by the atomic force microscopy images, a lower DC resulted in smoother and more homogeneous coatings than those produced with a higher DC, while field emission scanning electron microscopy images show that when E. coli and S. aureus membranes were attached to PW ppCar, they ruptured and distorted with a pore created and that these distortions and ruptures increased as the DC was reduced.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":"67 1","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jsuin.22.00042","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 4
Abstract
The production of suitable coatings with excellent antibacterial performance has now become a viable technique for enhancing the functional qualities of various biomedical materials. Here, pulsed plasma polymerisation was used to produce an antibacterial coating from the carvone oil of the spearmint plant. The coating films have adjustable chemical and physical properties based on the deposition parameter – that is, duty cycle (DC). The static water contact angle (WCA) values of pulsed wave (PW) plasma-polymerised carvone (ppCar) increase with the increase in DC. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy showed that the molecular structure of carvone is less fragmented, retaining moieties associated with C–O and C=O when the DC is reduced. These C–O and C=O moieties likely reduced the measured static WCA. This surface chemical composition with predominantly C–O and C=O also showed a stronger bactericidal effect, based on the biofilm assay with bacteria (Escherichia coli and Staphylococcus aureus), compared with those coatings with C–C and C–H produced at a higher DC. As shown by the atomic force microscopy images, a lower DC resulted in smoother and more homogeneous coatings than those produced with a higher DC, while field emission scanning electron microscopy images show that when E. coli and S. aureus membranes were attached to PW ppCar, they ruptured and distorted with a pore created and that these distortions and ruptures increased as the DC was reduced.
Surface InnovationsCHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍:
The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace.
Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.