{"title":"An Update on the Application of Nano Phytomedicine as an Emerging Therapeutic Tool for Neurodegenerative Diseases","authors":"Md Sadique Hussain, Varunesh Chaturvedi, Saloni Goyal, Sandeep Singh, Reyaz Hassan Mir","doi":"10.2174/0115734072258656231013085318","DOIUrl":null,"url":null,"abstract":"Abstract: The existence of the blood-brain barrier (BBB), a densely woven network of blood vessels and endothelial cells designed to prevent the infiltration of foreign substances into the brain, the methods employed in developing treatments for neurodegenerative disorders (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Multiple sclerosis, Amyotrophic lateral sclerosis, and others, pose significant challenges and complexities. These illnesses have had a terrible impact on the human population's health. Because early detection of these problems is poor and no good therapy has been established, they have emerged as the biggest lifethreatening healthcare burden worldwide compared to other significant illnesses. Traditional drug delivery techniques do not offer efficient treatment for NDs due to constraints in the BBB design, efflux pumps, and metabolic enzyme expression. Nanotechnology has the potential to significantly enhance ND therapy by utilizing systems that have been bioengineered to engage with living organisms at the cellular range. Compared to traditional techniques, nanotechnological technologies have several potential ways for crossing the BBB and increasing therapeutic efficacy in the brain. The introduction and growth of nanotechnology indicate promising potential for overcoming this issue. Engineered nanoparticles coupled with therapeutic moieties and imaging agents with dimensions ranging from 1-100 nm can improve effectiveness, cellular uptake, selective transport, and drug delivery to the brain due to their changed physicochemical properties. Conjugates of nanoparticles and medicinal plants, or their constituents known as nano phytomedicine, have recently gained importance in developing cutting-edge neuro-therapeutics due to their abundant natural supply, promising targeted delivery to the brain, and lower potential for adverse effects. This study summarizes the common NDs, their prevalence and pathogenesis, and potential herbal nanoformulation for treating NDs.","PeriodicalId":10772,"journal":{"name":"Current Bioactive Compounds","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Bioactive Compounds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115734072258656231013085318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: The existence of the blood-brain barrier (BBB), a densely woven network of blood vessels and endothelial cells designed to prevent the infiltration of foreign substances into the brain, the methods employed in developing treatments for neurodegenerative disorders (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Multiple sclerosis, Amyotrophic lateral sclerosis, and others, pose significant challenges and complexities. These illnesses have had a terrible impact on the human population's health. Because early detection of these problems is poor and no good therapy has been established, they have emerged as the biggest lifethreatening healthcare burden worldwide compared to other significant illnesses. Traditional drug delivery techniques do not offer efficient treatment for NDs due to constraints in the BBB design, efflux pumps, and metabolic enzyme expression. Nanotechnology has the potential to significantly enhance ND therapy by utilizing systems that have been bioengineered to engage with living organisms at the cellular range. Compared to traditional techniques, nanotechnological technologies have several potential ways for crossing the BBB and increasing therapeutic efficacy in the brain. The introduction and growth of nanotechnology indicate promising potential for overcoming this issue. Engineered nanoparticles coupled with therapeutic moieties and imaging agents with dimensions ranging from 1-100 nm can improve effectiveness, cellular uptake, selective transport, and drug delivery to the brain due to their changed physicochemical properties. Conjugates of nanoparticles and medicinal plants, or their constituents known as nano phytomedicine, have recently gained importance in developing cutting-edge neuro-therapeutics due to their abundant natural supply, promising targeted delivery to the brain, and lower potential for adverse effects. This study summarizes the common NDs, their prevalence and pathogenesis, and potential herbal nanoformulation for treating NDs.
Current Bioactive CompoundsPharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
1.90
自引率
0.00%
发文量
112
期刊介绍:
The journal aims to provide comprehensive review articles on new bioactive compounds with proven activities in various biological screenings and pharmacological models with a special emphasis on stereoeselective synthesis. The aim is to provide a valuable information source of bioactive compounds synthesized or isolated, which can be used for further development of pharmaceuticals by industry and academia. The journal should prove to be essential reading for pharmacologists, natural product chemists and medicinal chemists who wish to be kept informed and up-to-date with the most important developments on new bioactive compounds of natural or synthetic origin, including their stereoeselective synthesis.