Patterns, Transport, and Anisotropy of Salt Fingers in Shear

IF 2.8 2区 地球科学 Q1 OCEANOGRAPHY
Justin M Brown, Timour Radko
{"title":"Patterns, Transport, and Anisotropy of Salt Fingers in Shear","authors":"Justin M Brown, Timour Radko","doi":"10.1175/jpo-d-23-0049.1","DOIUrl":null,"url":null,"abstract":"Abstract Through an expansive series of simulations, we investigate the effects of spatially uniform shear on the transport, structure, and dynamics of salt fingers. The simulations reveal that shear adversely affects the heat and salt fluxes of the system, reducing them by up to an order of magnitude. We characterize this in detail across a broad range of Richardson numbers and density ratios. We demonstrate that the density ratio is strongly related to the amount of shear required to disrupt fingers with larger density ratio systems being more susceptible to disruption. An empirical relationship is proposed that captures this behavior that could be implemented into global ocean models. The results of these simulations accurately reproduce the microstructure measurements from NATRE observations. This work suggests that typical salt finger fluxes in the ocean will likely be a factor of 2–3 less than predicted by models not taking the effects of shear on double-diffusive systems into account.","PeriodicalId":56115,"journal":{"name":"Journal of Physical Oceanography","volume":"143 11","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jpo-d-23-0049.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Through an expansive series of simulations, we investigate the effects of spatially uniform shear on the transport, structure, and dynamics of salt fingers. The simulations reveal that shear adversely affects the heat and salt fluxes of the system, reducing them by up to an order of magnitude. We characterize this in detail across a broad range of Richardson numbers and density ratios. We demonstrate that the density ratio is strongly related to the amount of shear required to disrupt fingers with larger density ratio systems being more susceptible to disruption. An empirical relationship is proposed that captures this behavior that could be implemented into global ocean models. The results of these simulations accurately reproduce the microstructure measurements from NATRE observations. This work suggests that typical salt finger fluxes in the ocean will likely be a factor of 2–3 less than predicted by models not taking the effects of shear on double-diffusive systems into account.
剪切过程中盐指的模式、输运和各向异性
通过一系列广泛的模拟,我们研究了空间均匀剪切对盐指迁移、结构和动力学的影响。模拟结果表明,剪切对系统的热通量和盐通量有不利影响,使它们减少了一个数量级。我们在广泛的理查森数和密度比范围内详细描述了这一点。我们证明,密度比与破坏手指所需的剪切量密切相关,密度比较大的系统更容易受到破坏。提出了一种经验关系,可以捕捉到这种行为,并将其应用到全球海洋模型中。这些模拟的结果准确地再现了自然观测的微观结构测量结果。这项工作表明,在不考虑剪切对双扩散系统的影响的情况下,海洋中典型的盐指通量可能比模型预测的少2-3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
20.00%
发文量
200
审稿时长
4.5 months
期刊介绍: The Journal of Physical Oceanography (JPO) (ISSN: 0022-3670; eISSN: 1520-0485) publishes research related to the physics of the ocean and to processes operating at its boundaries. Observational, theoretical, and modeling studies are all welcome, especially those that focus on elucidating specific physical processes. Papers that investigate interactions with other components of the Earth system (e.g., ocean–atmosphere, physical–biological, and physical–chemical interactions) as well as studies of other fluid systems (e.g., lakes and laboratory tanks) are also invited, as long as their focus is on understanding the ocean or its role in the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信