Subgame-perfect Equilibria in Mean-payoff Games (journal version)

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Léonard Brice, Marie van den Bogaard, Jean-François Raskin
{"title":"Subgame-perfect Equilibria in Mean-payoff Games (journal version)","authors":"Léonard Brice, Marie van den Bogaard, Jean-François Raskin","doi":"10.46298/lmcs-19(4:6)2023","DOIUrl":null,"url":null,"abstract":"In this paper, we provide an effective characterization of all the subgame-perfect equilibria in infinite duration games played on finite graphs with mean-payoff objectives. To this end, we introduce the notion of requirement, and the notion of negotiation function. We establish that the plays that are supported by SPEs are exactly those that are consistent with a fixed point of the negotiation function. Finally, we use that characterization to prove that the SPE threshold problem, who status was left open in the literature, is decidable.","PeriodicalId":49904,"journal":{"name":"Logical Methods in Computer Science","volume":"4 2","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logical Methods in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-19(4:6)2023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we provide an effective characterization of all the subgame-perfect equilibria in infinite duration games played on finite graphs with mean-payoff objectives. To this end, we introduce the notion of requirement, and the notion of negotiation function. We establish that the plays that are supported by SPEs are exactly those that are consistent with a fixed point of the negotiation function. Finally, we use that characterization to prove that the SPE threshold problem, who status was left open in the literature, is decidable.
平均收益博弈中的次级完美均衡(期刊版)
在本文中,我们提供了有限图上具有平均收益目标的无限持续博弈的所有子博弈-完美均衡的有效表征。为此,我们引入了需求的概念和协商函数的概念。我们确定spe所支持的玩法正是那些与协商功能的固定点相一致的玩法。最后,我们使用该表征来证明SPE阈值问题是可确定的,谁的状态在文献中是开放的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Logical Methods in Computer Science
Logical Methods in Computer Science 工程技术-计算机:理论方法
CiteScore
1.80
自引率
0.00%
发文量
105
审稿时长
6-12 weeks
期刊介绍: Logical Methods in Computer Science is a fully refereed, open access, free, electronic journal. It welcomes papers on theoretical and practical areas in computer science involving logical methods, taken in a broad sense; some particular areas within its scope are listed below. Papers are refereed in the traditional way, with two or more referees per paper. Copyright is retained by the author. Topics of Logical Methods in Computer Science: Algebraic methods Automata and logic Automated deduction Categorical models and logic Coalgebraic methods Computability and Logic Computer-aided verification Concurrency theory Constraint programming Cyber-physical systems Database theory Defeasible reasoning Domain theory Emerging topics: Computational systems in biology Emerging topics: Quantum computation and logic Finite model theory Formalized mathematics Functional programming and lambda calculus Inductive logic and learning Interactive proof checking Logic and algorithms Logic and complexity Logic and games Logic and probability Logic for knowledge representation Logic programming Logics of programs Modal and temporal logics Program analysis and type checking Program development and specification Proof complexity Real time and hybrid systems Reasoning about actions and planning Satisfiability Security Semantics of programming languages Term rewriting and equational logic Type theory and constructive mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信