Brain Tumor Localization Using N-Cut

IF 1.7 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Tapasmini Sahoo, Kunal Kumar Das
{"title":"Brain Tumor Localization Using N-Cut","authors":"Tapasmini Sahoo, Kunal Kumar Das","doi":"10.3991/ijoe.v19i15.41641","DOIUrl":null,"url":null,"abstract":"A brain tumor is an abnormal collection of tissue in the brain. When tumors form, they are classified as either malignant or benign. It is critical to notice and identify the existence of tumors in brain images since they can be life threatening. This paper illustrates a novel segmentation method in which threshold technique is combined with normalized cut (Ncut) for the segregation of the tumors from brain magnetic resonance (MR) images. Image segmentation is a technique for grouping images. It is a method of splitting an image into sections with comparable attributes such as intensity, texture, colour, and so on. In thresholding, an object is distinguished from the background, and for the proposed segmentation methodology, the threshold value is determined by normalized graph cut. A weighted graph is divided into disjointed sets (groups) in which the similarity within a group is high and the similarity across groups is low. A graph-cut is a grouping approach in which the total weight of edges eliminated between these two pieces is used to calculate the degree of dissimilarity between these two groups. The normalized cut criterion is used to calculate the total likeness within the groups as well as the dissimilarity between the different groups.","PeriodicalId":36900,"journal":{"name":"International Journal of Online and Biomedical Engineering","volume":"116 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Online and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v19i15.41641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A brain tumor is an abnormal collection of tissue in the brain. When tumors form, they are classified as either malignant or benign. It is critical to notice and identify the existence of tumors in brain images since they can be life threatening. This paper illustrates a novel segmentation method in which threshold technique is combined with normalized cut (Ncut) for the segregation of the tumors from brain magnetic resonance (MR) images. Image segmentation is a technique for grouping images. It is a method of splitting an image into sections with comparable attributes such as intensity, texture, colour, and so on. In thresholding, an object is distinguished from the background, and for the proposed segmentation methodology, the threshold value is determined by normalized graph cut. A weighted graph is divided into disjointed sets (groups) in which the similarity within a group is high and the similarity across groups is low. A graph-cut is a grouping approach in which the total weight of edges eliminated between these two pieces is used to calculate the degree of dissimilarity between these two groups. The normalized cut criterion is used to calculate the total likeness within the groups as well as the dissimilarity between the different groups.
利用N-Cut技术定位脑肿瘤
脑瘤是大脑中异常组织的集合。肿瘤形成后分为恶性和良性。在脑图像中注意和识别肿瘤的存在是至关重要的,因为它们可能危及生命。本文提出了一种将阈值技术与归一化切割(Ncut)相结合的脑磁共振图像肿瘤分割方法。图像分割是一种对图像进行分组的技术。它是一种将图像分割成具有类似属性(如强度、纹理、颜色等)的部分的方法。在阈值分割中,将目标与背景区分开来,对于所提出的分割方法,阈值由归一化图切确定。加权图被划分为不相交的集合(组),组内相似度高,组间相似度低。图切是一种分组方法,其中使用在这两个块之间消除的边的总权重来计算这两个组之间的不相似度。使用归一化切割准则计算组内的总相似度以及组间的不相似度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
46.20%
发文量
143
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信