Shilin Yang, Andrii Bieliatynskyi, Viacheslav Trachevskyi, Meiyu Shao, Mingyang Ta
{"title":"Research of Nano-modified Plain Cement Concrete Mixtures and Cement-Based Concrete","authors":"Shilin Yang, Andrii Bieliatynskyi, Viacheslav Trachevskyi, Meiyu Shao, Mingyang Ta","doi":"10.1186/s40069-023-00601-8","DOIUrl":null,"url":null,"abstract":"Abstract The use of complex modifiers for plain cement concrete mixtures and concrete is becoming increasingly popular in modern materials science. The article presents studies of the influence of a polymer additive structured by carbon nanomaterials on physical and mechanical characteristics of plain cement concrete mixtures. IR spectroscopy and thermogravimetry have shown that the use of carbon nanomaterials significantly altered the structure of plain cement concrete mixtures. As a result of the fact that the high-strength nanomaterial is the center of crystallization of cement rock newly formed structures, a denser reinforced microstructure is formed, which significantly increases the strength properties of plain cement concrete mixtures. The inclusion of a polymer complex additive in plain cement concrete mixtures leads to higher and longer plasticizing, which plays an important role in the production of monolithic products. It was determined that, in the presence of a complex modifier (polymer additive structured by carbon nanotubes), the crystalline structure of calcium hydrosilicates is compacted, which causes high physical and mechanical characteristics of modified plain cement concrete mixtures. It has been experimentally shown that the additive Ethacryl HF (France) from the class of polycarboxylates, chosen for research, acts as an accelerator for setting and curing cement paste, and also increases its strength characteristics. In general, in this study, there is a water-reducing effect from the application of the additive for all plain cement concrete mixtures. Water requirements are reduced by 5 mas. %, while the strength is increased by 19%. The formulation of plain cement concrete mixtures modified by polymer additives, structured by carbon nanotubes, with high performance were developed.","PeriodicalId":13832,"journal":{"name":"International Journal of Concrete Structures and Materials","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Concrete Structures and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40069-023-00601-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The use of complex modifiers for plain cement concrete mixtures and concrete is becoming increasingly popular in modern materials science. The article presents studies of the influence of a polymer additive structured by carbon nanomaterials on physical and mechanical characteristics of plain cement concrete mixtures. IR spectroscopy and thermogravimetry have shown that the use of carbon nanomaterials significantly altered the structure of plain cement concrete mixtures. As a result of the fact that the high-strength nanomaterial is the center of crystallization of cement rock newly formed structures, a denser reinforced microstructure is formed, which significantly increases the strength properties of plain cement concrete mixtures. The inclusion of a polymer complex additive in plain cement concrete mixtures leads to higher and longer plasticizing, which plays an important role in the production of monolithic products. It was determined that, in the presence of a complex modifier (polymer additive structured by carbon nanotubes), the crystalline structure of calcium hydrosilicates is compacted, which causes high physical and mechanical characteristics of modified plain cement concrete mixtures. It has been experimentally shown that the additive Ethacryl HF (France) from the class of polycarboxylates, chosen for research, acts as an accelerator for setting and curing cement paste, and also increases its strength characteristics. In general, in this study, there is a water-reducing effect from the application of the additive for all plain cement concrete mixtures. Water requirements are reduced by 5 mas. %, while the strength is increased by 19%. The formulation of plain cement concrete mixtures modified by polymer additives, structured by carbon nanotubes, with high performance were developed.
期刊介绍:
The International Journal of Concrete Structures and Materials (IJCSM) provides a forum targeted for engineers and scientists around the globe to present and discuss various topics related to concrete, concrete structures and other applied materials incorporating cement cementitious binder, and polymer or fiber in conjunction with concrete. These forums give participants an opportunity to contribute their knowledge for the advancement of society. Topics include, but are not limited to, research results on
Properties and performance of concrete and concrete structures
Advanced and improved experimental techniques
Latest modelling methods
Possible improvement and enhancement of concrete properties
Structural and microstructural characterization
Concrete applications
Fiber reinforced concrete technology
Concrete waste management.