{"title":"Study of the physico-chemical and bacteriological quality of water intended for consumption in the town of Gagal, southwestern Chad","authors":"Abdallah Mahamat Nour, Hamit Abderamane, Mahamat Yaya Idriss, Honoré Allah-Am Djekobe, Himed Bouzed Bouzed","doi":"10.31018/jans.v15i3.4560","DOIUrl":null,"url":null,"abstract":"The city of Gagal suffers from insufficient drinking water, and the population turns to surface water, wells and drillings without guarantee of quality. In order to characterize the hydrogeochemical and bacteriological properties of the waters of the aquifer system in the city of Gagal, to contribute to improving its knowledge, field campaigns were undertaken to sample the groundwater.The present study focuses on the hydrogeochemical and bacteriological characterization of drinking water in Gagal, southwestern Chad. The methodology consisted of acquiring existing data, a field campaign, and a chemical and bacteriological analysis of the water in the laboratory. The results of the physicochemical analyses revealed that the values of the parameters such as conductivity, pH (5.23), Ca²⁺ (26.11 mg/L), Mg²⁺(5.14 mg/L), Na⁺(3.54 mg/L), K⁺(1.34 mg/L), HCO3-(81.74 mg/L), Cl-(11.77 mg/L), SO4-(1.94 mg/L), and NO3- (8.70 mg/L) conformed to the WHO potability standards. Piper's diagram showed calcic and magnesian bicarbonate facies represented by 75%; and calcic and magnesian sulfate chloride facies in 25% of the analyzed waters. The bacteriological (Total coliforms (0 to more than 135,200 CFU/100 ml), Escherichia coli (0 and 14,400 CFU/100 ml), faecal enterococci (0 and 4600 CFU/100 ml)) study confirmed that the water from the wells and boreholes showed pollution of bacterial origin. Using these waters may endanger the populations with the risks of hydric diseases.","PeriodicalId":14996,"journal":{"name":"Journal of Applied and Natural Science","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31018/jans.v15i3.4560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0
Abstract
The city of Gagal suffers from insufficient drinking water, and the population turns to surface water, wells and drillings without guarantee of quality. In order to characterize the hydrogeochemical and bacteriological properties of the waters of the aquifer system in the city of Gagal, to contribute to improving its knowledge, field campaigns were undertaken to sample the groundwater.The present study focuses on the hydrogeochemical and bacteriological characterization of drinking water in Gagal, southwestern Chad. The methodology consisted of acquiring existing data, a field campaign, and a chemical and bacteriological analysis of the water in the laboratory. The results of the physicochemical analyses revealed that the values of the parameters such as conductivity, pH (5.23), Ca²⁺ (26.11 mg/L), Mg²⁺(5.14 mg/L), Na⁺(3.54 mg/L), K⁺(1.34 mg/L), HCO3-(81.74 mg/L), Cl-(11.77 mg/L), SO4-(1.94 mg/L), and NO3- (8.70 mg/L) conformed to the WHO potability standards. Piper's diagram showed calcic and magnesian bicarbonate facies represented by 75%; and calcic and magnesian sulfate chloride facies in 25% of the analyzed waters. The bacteriological (Total coliforms (0 to more than 135,200 CFU/100 ml), Escherichia coli (0 and 14,400 CFU/100 ml), faecal enterococci (0 and 4600 CFU/100 ml)) study confirmed that the water from the wells and boreholes showed pollution of bacterial origin. Using these waters may endanger the populations with the risks of hydric diseases.