Recursive Feature Elimination with Cross-Validation with Decision Tree: Feature Selection Method for Machine Learning-Based Intrusion Detection Systems

IF 3.3 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Mohammed Awad, Salam Fraihat
{"title":"Recursive Feature Elimination with Cross-Validation with Decision Tree: Feature Selection Method for Machine Learning-Based Intrusion Detection Systems","authors":"Mohammed Awad, Salam Fraihat","doi":"10.3390/jsan12050067","DOIUrl":null,"url":null,"abstract":"The frequency of cyber-attacks on the Internet of Things (IoT) networks has significantly increased in recent years. Anomaly-based network intrusion detection systems (NIDSs) offer an additional layer of network protection by detecting and reporting the infamous zero-day attacks. However, the efficiency of real-time detection systems relies on several factors, including the number of features utilized to make a prediction. Thus, minimizing them is crucial as it implies faster prediction and lower storage space. This paper utilizes recursive feature elimination with cross-validation using a decision tree model as an estimator (DT-RFECV) to select an optimal subset of 15 of UNSW-NB15’s 42 features and evaluates them using several ML classifiers, including tree-based ones, such as random forest. The proposed NIDS exhibits an accurate prediction model for network flow with a binary classification accuracy of 95.30% compared to 95.56% when using the entire feature set. The reported scores are comparable to those attained by the state-of-the-art systems despite decreasing the number of utilized features by about 65%.","PeriodicalId":37584,"journal":{"name":"Journal of Sensor and Actuator Networks","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensor and Actuator Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jsan12050067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

The frequency of cyber-attacks on the Internet of Things (IoT) networks has significantly increased in recent years. Anomaly-based network intrusion detection systems (NIDSs) offer an additional layer of network protection by detecting and reporting the infamous zero-day attacks. However, the efficiency of real-time detection systems relies on several factors, including the number of features utilized to make a prediction. Thus, minimizing them is crucial as it implies faster prediction and lower storage space. This paper utilizes recursive feature elimination with cross-validation using a decision tree model as an estimator (DT-RFECV) to select an optimal subset of 15 of UNSW-NB15’s 42 features and evaluates them using several ML classifiers, including tree-based ones, such as random forest. The proposed NIDS exhibits an accurate prediction model for network flow with a binary classification accuracy of 95.30% compared to 95.56% when using the entire feature set. The reported scores are comparable to those attained by the state-of-the-art systems despite decreasing the number of utilized features by about 65%.
基于决策树交叉验证的递归特征消除:基于机器学习的入侵检测系统特征选择方法
近年来,针对物联网(IoT)网络的网络攻击频率显著增加。基于异常的网络入侵检测系统(nids)通过检测和报告臭名昭著的零日攻击提供了额外的网络保护层。然而,实时检测系统的效率取决于几个因素,包括用于预测的特征数量。因此,最小化它们是至关重要的,因为这意味着更快的预测和更低的存储空间。本文利用递归特征消除和交叉验证,使用决策树模型作为估计器(DT-RFECV),从UNSW-NB15的42个特征中选择15个最优子集,并使用几个ML分类器(包括基于树的分类器,如随机森林)对它们进行评估。所提出的NIDS展示了一个准确的网络流量预测模型,与使用整个特征集时的95.56%相比,其二值分类准确率为95.30%。报告的分数与最先进的系统所获得的分数相当,尽管使用的特征数量减少了约65%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Sensor and Actuator Networks
Journal of Sensor and Actuator Networks Physics and Astronomy-Instrumentation
CiteScore
7.90
自引率
2.90%
发文量
70
审稿时长
11 weeks
期刊介绍: Journal of Sensor and Actuator Networks (ISSN 2224-2708) is an international open access journal on the science and technology of sensor and actuator networks. It publishes regular research papers, reviews (including comprehensive reviews on complete sensor and actuator networks), and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信