Hamiltonian knottedness and lifting paths from the shape invariant

IF 1.3 1区 数学 Q1 MATHEMATICS
Richard Hind, Jun Zhang
{"title":"Hamiltonian knottedness and lifting paths from the shape invariant","authors":"Richard Hind, Jun Zhang","doi":"10.1112/s0010437x23007479","DOIUrl":null,"url":null,"abstract":"The Hamiltonian shape invariant of a domain $X \\subset \\mathbb R^4$, as a subset of $\\mathbb R^2$, describes the product Lagrangian tori which may be embedded in $X$. We provide necessary and sufficient conditions to determine whether or not a path in the shape invariant can lift, that is, be realized as a smooth family of embedded Lagrangian tori, when $X$ is a basic $4$-dimensional toric domain such as a ball $B^4(R)$, an ellipsoid $E(a,b)$ with $\\frac{b}{a} \\in {\\mathbb N}_{\\geq 2}$, or a polydisk $P(c,d)$. As applications, via the path lifting, we can detect knotted embeddings of product Lagrangian tori in many toric $X$. We also obtain novel obstructions to symplectic embeddings between domains that are more general than toric concave or toric convex.","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"25 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/s0010437x23007479","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Hamiltonian shape invariant of a domain $X \subset \mathbb R^4$, as a subset of $\mathbb R^2$, describes the product Lagrangian tori which may be embedded in $X$. We provide necessary and sufficient conditions to determine whether or not a path in the shape invariant can lift, that is, be realized as a smooth family of embedded Lagrangian tori, when $X$ is a basic $4$-dimensional toric domain such as a ball $B^4(R)$, an ellipsoid $E(a,b)$ with $\frac{b}{a} \in {\mathbb N}_{\geq 2}$, or a polydisk $P(c,d)$. As applications, via the path lifting, we can detect knotted embeddings of product Lagrangian tori in many toric $X$. We also obtain novel obstructions to symplectic embeddings between domains that are more general than toric concave or toric convex.
哈密顿结性和形状不变量的提升路径
作为$\mathbb R^2$的子集,域$X \subset \mathbb R^4$的哈密顿形状不变量描述了可嵌入到$X$中的积拉格朗日环面。当$X$是一个基本的$4$维环面域,如球$B^4(R)$、带$\frac{b}{a} \in {\mathbb N}_{\geq 2}$的椭球$E(a,b)$或多盘$P(c,d)$时,我们提供了确定形状不变量中的路径是否可以提升的充分必要条件,即实现为嵌入拉格朗日环面的光滑族。作为应用,通过路径提升,我们可以在许多环面中检测乘积拉格朗日环面的打结嵌入$X$。我们还获得了比环面凹或环面凸更一般的域间辛嵌入的新障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信