{"title":"Effect of Ni addition on the behavior of dissimilar A356-AZ91/CeO <sub>2</sub> aluminum-magnesium based composite fabricated by friction stir process technique","authors":"Shashi Prakash Dwivedi, Shubham Sharma","doi":"10.1080/09276440.2023.2260236","DOIUrl":null,"url":null,"abstract":"ABSTRACTIn the present study, the Behavior of Dissimilar A356-AZ91/CeO2 Aluminum-Magnesium Based Composite Fabricated by Friction Stir Process Technique was observed. The Macrostructure of A356-AZ91/5%CeO2/2% Ni showed a defect-free and crack-free composite. Microstructural examination revealed that the FSP effectively distributed the CeO2 particles within the matrix, resulting in a refined microstructure. Tensile strength of A356-AZ91 matrix material was improved by about 38.04% after the addition of 5% CeO2. However, with the 2% Ni addition to A356-AZ91/5% CeO2 composite displaying further enhancement. The addition of 5% CeO2 and 2% Ni to the A356-AZ91 alloy through FSP showed a 44.78% improvement in tensile strength. There was an improvement in the hardness after adding the 2% Ni- 5% CeO2 particles was found 41.66%. Hardness of A356-AZ91-5% CeO2 was improved only by about 28.33% without addition of 2% Ni. Wear testing of aluminum composite was carried out using a pin-on-disc apparatus. The wear rate of A356-AZ91 alloy decreased by about 70% after the addition of the 2% Ni- 5% CeO2 particles. However, wear rate of A356-AZ91 alloy decreased only by about 61.66% after the addition of 5% CeO2 particles.KEYWORDS: Interfacial layermacrostructureFSP techniquefatigue strengthwear Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2260236","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 4
Abstract
ABSTRACTIn the present study, the Behavior of Dissimilar A356-AZ91/CeO2 Aluminum-Magnesium Based Composite Fabricated by Friction Stir Process Technique was observed. The Macrostructure of A356-AZ91/5%CeO2/2% Ni showed a defect-free and crack-free composite. Microstructural examination revealed that the FSP effectively distributed the CeO2 particles within the matrix, resulting in a refined microstructure. Tensile strength of A356-AZ91 matrix material was improved by about 38.04% after the addition of 5% CeO2. However, with the 2% Ni addition to A356-AZ91/5% CeO2 composite displaying further enhancement. The addition of 5% CeO2 and 2% Ni to the A356-AZ91 alloy through FSP showed a 44.78% improvement in tensile strength. There was an improvement in the hardness after adding the 2% Ni- 5% CeO2 particles was found 41.66%. Hardness of A356-AZ91-5% CeO2 was improved only by about 28.33% without addition of 2% Ni. Wear testing of aluminum composite was carried out using a pin-on-disc apparatus. The wear rate of A356-AZ91 alloy decreased by about 70% after the addition of the 2% Ni- 5% CeO2 particles. However, wear rate of A356-AZ91 alloy decreased only by about 61.66% after the addition of 5% CeO2 particles.KEYWORDS: Interfacial layermacrostructureFSP techniquefatigue strengthwear Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories.
Composite Interfaces covers a wide range of topics including - but not restricted to:
-surface treatment of reinforcing fibers and fillers-
effect of interface structure on mechanical properties, physical properties, curing and rheology-
coupling agents-
synthesis of matrices designed to promote adhesion-
molecular and atomic characterization of interfaces-
interfacial morphology-
dynamic mechanical study of interphases-
interfacial compatibilization-
adsorption-
tribology-
composites with organic, inorganic and metallic materials-
composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields