Fluctuations of dimer heights on contracting square-hexagon lattices

IF 1.5 Q2 PHYSICS, MATHEMATICAL
Zhongyang Li
{"title":"Fluctuations of dimer heights on contracting square-hexagon lattices","authors":"Zhongyang Li","doi":"10.4171/aihpd/174","DOIUrl":null,"url":null,"abstract":"We study perfect matchings on the square-hexagon lattice with $1\\times n$ periodic edge weights and with one of the following boundary conditions: (1) each remaining vertex on the bottom boundary is followed by $(m-1)$ removed vertices; (2) the bottom boundary can be divided into finitely many alternating line segments, each of which has a fixed positive length in the scaling limit, such that all the vertices along each line segment are either removed or retained. In case (1), we show that under certain homeomorphism from the liquid region to the upper half-plane, the height fluctuations converge to the Gaussian free field in the upper half-plane. In case (2), when the edge weights $x\\_1,\\ldots,x\\_n$ in one period satisfy the condition that $x\\_{i+1}=O(\\frac{x\\_i}{e^{N\\alpha}})$, where $\\alpha>0$ is a constant independent of $N$, we show that the height fluctuations converge to a sum of independent Gaussian free fields.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/aihpd/174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 7

Abstract

We study perfect matchings on the square-hexagon lattice with $1\times n$ periodic edge weights and with one of the following boundary conditions: (1) each remaining vertex on the bottom boundary is followed by $(m-1)$ removed vertices; (2) the bottom boundary can be divided into finitely many alternating line segments, each of which has a fixed positive length in the scaling limit, such that all the vertices along each line segment are either removed or retained. In case (1), we show that under certain homeomorphism from the liquid region to the upper half-plane, the height fluctuations converge to the Gaussian free field in the upper half-plane. In case (2), when the edge weights $x\_1,\ldots,x\_n$ in one period satisfy the condition that $x\_{i+1}=O(\frac{x\_i}{e^{N\alpha}})$, where $\alpha>0$ is a constant independent of $N$, we show that the height fluctuations converge to a sum of independent Gaussian free fields.
收缩方形六边形晶格上二聚体高度的波动
我们研究了具有$1\times n$周期边权和以下边界条件之一的方形六边形格上的完美匹配:(1)底部边界上的每个剩余顶点后面都有$(m-1)$移除的顶点;(2)底部边界可以划分为有限多个交替的线段,每条线段在缩放极限上都有一个固定的正长度,使得每条线段上的所有顶点要么被移除,要么被保留。在情形(1)中,我们证明了在从液体区域到上半平面的一定同胚条件下,高度波动收敛于上半平面的高斯自由场。在情形(2)中,当一个周期内的边权$x\_1,\ldots,x\_n$满足$x\_{i+1}=O(\frac{x\_i}{e^{N\alpha}})$的条件时,其中$\alpha>0$是独立于$N$的常数,我们证明高度波动收敛于独立的高斯自由场和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信