Additive properties of the evil and odious numbers and similar sequences

IF 0.5 Q3 MATHEMATICS
Jean-Paul Allouche, Jeffrey Shallit
{"title":"Additive properties of the evil and odious numbers and similar sequences","authors":"Jean-Paul Allouche, Jeffrey Shallit","doi":"10.7169/facm/2108","DOIUrl":null,"url":null,"abstract":"First we reprove two results in additive number theorydue to Dombi and Chen & Wang, respectively, on the number ofrepresentations of $n$ as the sum of two odious or evil numbers, using techniques from automata theory and logic. We also use this technique to prove a new result aboutthe numbers represented by five summands. Furthermore, we prove some new results on the tenfold sums of the evil and odious numbers, as well as $k$-fold sums of similar sequences of integers, by using techniques of analytic number theory involving trigonometric sums associated with the $\\pm 1$ characteristic sequences of these integers.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/2108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

First we reprove two results in additive number theorydue to Dombi and Chen & Wang, respectively, on the number ofrepresentations of $n$ as the sum of two odious or evil numbers, using techniques from automata theory and logic. We also use this technique to prove a new result aboutthe numbers represented by five summands. Furthermore, we prove some new results on the tenfold sums of the evil and odious numbers, as well as $k$-fold sums of similar sequences of integers, by using techniques of analytic number theory involving trigonometric sums associated with the $\pm 1$ characteristic sequences of these integers.
恶数、恶数及相似数列的加性性质
首先,我们利用自动机理论和逻辑的技术,分别证明了Dombi和Chen & Wang在可加数论中关于$n$作为两个恶数或恶数之和的表示数的两个结果。我们还用这个方法证明了一个关于5个和表示的数的新结果。在此基础上,利用解析数论的技巧,利用与恶数和恶数特征序列相关的三角和,证明了恶数和恶数的十倍和和类似整数序列的k倍和的一些新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信