{"title":"Additive properties of the evil and odious numbers and similar sequences","authors":"Jean-Paul Allouche, Jeffrey Shallit","doi":"10.7169/facm/2108","DOIUrl":null,"url":null,"abstract":"First we reprove two results in additive number theorydue to Dombi and Chen & Wang, respectively, on the number ofrepresentations of $n$ as the sum of two odious or evil numbers, using techniques from automata theory and logic. We also use this technique to prove a new result aboutthe numbers represented by five summands. Furthermore, we prove some new results on the tenfold sums of the evil and odious numbers, as well as $k$-fold sums of similar sequences of integers, by using techniques of analytic number theory involving trigonometric sums associated with the $\\pm 1$ characteristic sequences of these integers.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/2108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
First we reprove two results in additive number theorydue to Dombi and Chen & Wang, respectively, on the number ofrepresentations of $n$ as the sum of two odious or evil numbers, using techniques from automata theory and logic. We also use this technique to prove a new result aboutthe numbers represented by five summands. Furthermore, we prove some new results on the tenfold sums of the evil and odious numbers, as well as $k$-fold sums of similar sequences of integers, by using techniques of analytic number theory involving trigonometric sums associated with the $\pm 1$ characteristic sequences of these integers.