Gerardo Guerra, Pau Mercade-Ruiz, Gaetana Anamiati, Lars Landberg
{"title":"Long-term PV system modelling and degradation using neural networks","authors":"Gerardo Guerra, Pau Mercade-Ruiz, Gaetana Anamiati, Lars Landberg","doi":"10.1051/epjpv/2023018","DOIUrl":null,"url":null,"abstract":"The power production of photovoltaic plants can be affected throughout its operational lifetime by multiple losses and degradation mechanisms. Although long-term degradation has been widely studied, most methodologies assume a specific degradation behaviour and require detailed metadata. This paper presents a methodology for the calculation of long-term degradation of a photovoltaic plant based on neural networks. The goal of the neural network is to model the photovoltaic plant's power production as a function of environmental conditions and time elapsed since the plant started operating. A big advantage of this method with respect to others is that it is completely data-driven, requires no additional information, and makes no assumptions related to degradation behaviour. Results show that the model can derive a long-term degradation trend without overfitting to shorter-term effects or abrupt changes in year-to-year operation.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Photovoltaics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjpv/2023018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The power production of photovoltaic plants can be affected throughout its operational lifetime by multiple losses and degradation mechanisms. Although long-term degradation has been widely studied, most methodologies assume a specific degradation behaviour and require detailed metadata. This paper presents a methodology for the calculation of long-term degradation of a photovoltaic plant based on neural networks. The goal of the neural network is to model the photovoltaic plant's power production as a function of environmental conditions and time elapsed since the plant started operating. A big advantage of this method with respect to others is that it is completely data-driven, requires no additional information, and makes no assumptions related to degradation behaviour. Results show that the model can derive a long-term degradation trend without overfitting to shorter-term effects or abrupt changes in year-to-year operation.