基于深度学习的电子散斑干涉条纹图相位恢复

IF 0.9 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
张芳 Zhang Fang, 李文恒 Li Wenheng, 王雯 Wang Wen, 赵芮 Zhao Rui
{"title":"基于深度学习的电子散斑干涉条纹图相位恢复","authors":"张芳 Zhang Fang, 李文恒 Li Wenheng, 王雯 Wang Wen, 赵芮 Zhao Rui","doi":"10.3788/lop222277","DOIUrl":null,"url":null,"abstract":"针对单幅电子散斑干涉条纹图的相位恢复问题,以U-Net为基础网络,融合子像素卷积模块和结构化特征增强模块,提出了USS-Net,实现对单幅条纹图端到端的相位恢复。首先改进上采样方式,采用子像素卷积使网络能学习到更多的条纹细节信息,同时降低反卷积零值填充对梯度计算的影响。其次在编码部分改进特征融合方式,采用结构化特征增强模块,充分融合不同尺度的特征信息,解决条纹疏密程度不均导致特征提取不佳的问题,进而提升对单个像素点的分割准确性。建立了ESPI条纹-相位仿真和实验数据集,对USS-Net模型进行测试与分析,验证所提方法的有效性。所提方法克服了传统相位恢复方法过程繁琐、容易受噪声干扰等缺点,有效提高了单幅条纹图相位恢复的准确率。","PeriodicalId":51502,"journal":{"name":"激光与光电子学进展","volume":"85 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"激光与光电子学进展","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3788/lop222277","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

针对单幅电子散斑干涉条纹图的相位恢复问题,以U-Net为基础网络,融合子像素卷积模块和结构化特征增强模块,提出了USS-Net,实现对单幅条纹图端到端的相位恢复。首先改进上采样方式,采用子像素卷积使网络能学习到更多的条纹细节信息,同时降低反卷积零值填充对梯度计算的影响。其次在编码部分改进特征融合方式,采用结构化特征增强模块,充分融合不同尺度的特征信息,解决条纹疏密程度不均导致特征提取不佳的问题,进而提升对单个像素点的分割准确性。建立了ESPI条纹-相位仿真和实验数据集,对USS-Net模型进行测试与分析,验证所提方法的有效性。所提方法克服了传统相位恢复方法过程繁琐、容易受噪声干扰等缺点,有效提高了单幅条纹图相位恢复的准确率。
基于深度学习的电子散斑干涉条纹图相位恢复
针对单幅电子散斑干涉条纹图的相位恢复问题,以U-Net为基础网络,融合子像素卷积模块和结构化特征增强模块,提出了USS-Net,实现对单幅条纹图端到端的相位恢复。首先改进上采样方式,采用子像素卷积使网络能学习到更多的条纹细节信息,同时降低反卷积零值填充对梯度计算的影响。其次在编码部分改进特征融合方式,采用结构化特征增强模块,充分融合不同尺度的特征信息,解决条纹疏密程度不均导致特征提取不佳的问题,进而提升对单个像素点的分割准确性。建立了ESPI条纹-相位仿真和实验数据集,对USS-Net模型进行测试与分析,验证所提方法的有效性。所提方法克服了传统相位恢复方法过程繁琐、容易受噪声干扰等缺点,有效提高了单幅条纹图相位恢复的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
50.00%
发文量
18006
期刊介绍: Laser & Optoelectronics Progress, the first laser and optoelectronics journal published in China. The main columns include general, lasers and laser optics, fiber optics and optical communications, optical design and fabrication, materials, image processing, imaging systems, optical devices, remote sensing and sensors, atmospheric optics and oceanic optics, diffraction and gratings, atomic and molecular physics, detectors, thin films, ultrafast optics, etc. The journal is included in ESCI, INSPEC, Scopus, CSCD, Chinese Core Journals, Chinese Science and Technology Core Journals, and T2 level of the Classified Catalogue of High Quality Science and Technology Journals in Optical Engineering and Optical Fields, and other databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信