{"title":"DECAY PROPERTIES AND ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS FOR THE NONLINEAR FRACTIONAL SCHRÖDINGER-POISSON SYSTEM","authors":"Lintao Liu, Haibo Chen, Jie Yang","doi":"10.11948/20220378","DOIUrl":null,"url":null,"abstract":"In this paper, we study the following nonlinear fractional Schrödinger-Poisson system <p class=\"disp_formula\">$\\begin{equation*}\\left\\{\\begin{array}{ll}(-\\Delta)^{s}u+\\lambda V(x)u+\\mu\\phi u=|u|^{p-2}u, & \\hbox{in}\\; \\mathbb{R}^3 , \\\\(-\\Delta)^{s}\\phi=u^{2}, & \\hbox{in}\\; \\mathbb{R}^3, \\end{array}\\right.\\end{equation*}$ where <inline-formula><tex-math id=\"M1\">\\begin{document}$s\\in(\\frac{3}{4}, 1)$\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M2\">\\begin{document}$ 2<p<4$\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M3\">\\begin{document}$\\lambda, \\mu$\\end{document}</tex-math></inline-formula> are positive parameters and the potential <inline-formula><tex-math id=\"M4\">\\begin{document}$V(x)$\\end{document}</tex-math></inline-formula> is a nonnegative continuous function with a potential well <inline-formula><tex-math id=\"M5\">\\begin{document}$\\Omega=int V^{-1}(0)$\\end{document}</tex-math></inline-formula>. By establishing truncation technique and the parameter-dependent compactness lemma, the existence, decay rate and asymptotic behavior of positive solutions are established. Moreover, we prove some nonexistence results in the case of <inline-formula><tex-math id=\"M6\">\\begin{document}$ 2<p\\leq3$\\end{document}</tex-math></inline-formula>.","PeriodicalId":48811,"journal":{"name":"Journal of Applied Analysis and Computation","volume":"36 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Analysis and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11948/20220378","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the following nonlinear fractional Schrödinger-Poisson system
$\begin{equation*}\left\{\begin{array}{ll}(-\Delta)^{s}u+\lambda V(x)u+\mu\phi u=|u|^{p-2}u, & \hbox{in}\; \mathbb{R}^3 , \\(-\Delta)^{s}\phi=u^{2}, & \hbox{in}\; \mathbb{R}^3, \end{array}\right.\end{equation*}$ where \begin{document}$s\in(\frac{3}{4}, 1)$\end{document}, \begin{document}$ 2, \begin{document}$\lambda, \mu$\end{document} are positive parameters and the potential \begin{document}$V(x)$\end{document} is a nonnegative continuous function with a potential well \begin{document}$\Omega=int V^{-1}(0)$\end{document}. By establishing truncation technique and the parameter-dependent compactness lemma, the existence, decay rate and asymptotic behavior of positive solutions are established. Moreover, we prove some nonexistence results in the case of \begin{document}$ 2.
In this paper, we study the following nonlinear fractional Schrödinger-Poisson system $\begin{equation*}\left\{\begin{array}{ll}(-\Delta)^{s}u+\lambda V(x)u+\mu\phi u=|u|^{p-2}u, & \hbox{in}\; \mathbb{R}^3 , \\(-\Delta)^{s}\phi=u^{2}, & \hbox{in}\; \mathbb{R}^3, \end{array}\right.\end{equation*}$ where \begin{document}$s\in(\frac{3}{4}, 1)$\end{document}, \begin{document}$ 2<p<4$\end{document}, \begin{document}$\lambda, \mu$\end{document} are positive parameters and the potential \begin{document}$V(x)$\end{document} is a nonnegative continuous function with a potential well \begin{document}$\Omega=int V^{-1}(0)$\end{document}. By establishing truncation technique and the parameter-dependent compactness lemma, the existence, decay rate and asymptotic behavior of positive solutions are established. Moreover, we prove some nonexistence results in the case of \begin{document}$ 2<p\leq3$\end{document}.
期刊介绍:
The Journal of Applied Analysis and Computation (JAAC) is aimed to publish original research papers and survey articles on the theory, scientific computation and application of nonlinear analysis, differential equations and dynamical systems including interdisciplinary research topics on dynamics of mathematical models arising from major areas of science and engineering. The journal is published quarterly in February, April, June, August, October and December by Shanghai Normal University and Wilmington Scientific Publisher, and issued by Shanghai Normal University.