ON BEST PROXIMITY POINT APPROACH TO SOLVABILITY OF A SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Pradip Ramesh Patle, Moosa Gabeleh, Manuel De La Sen
{"title":"ON BEST PROXIMITY POINT APPROACH TO SOLVABILITY OF A SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS","authors":"Pradip Ramesh Patle, Moosa Gabeleh, Manuel De La Sen","doi":"10.11948/20230007","DOIUrl":null,"url":null,"abstract":"In this article, a class of cyclic (noncyclic) condensing operators is defined on a Banach space using the notion of measure of noncompactness and $ C $-class functions. For these newly defined condensing operators, best proximity point (pair) results are manifested. Then the obtained main results are applied to demonstrate the existence of optimum solutions of a system of fractional differential equations involving $ \\psi $-Hilfer fractional derivatives.","PeriodicalId":48811,"journal":{"name":"Journal of Applied Analysis and Computation","volume":"51 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Analysis and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11948/20230007","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a class of cyclic (noncyclic) condensing operators is defined on a Banach space using the notion of measure of noncompactness and $ C $-class functions. For these newly defined condensing operators, best proximity point (pair) results are manifested. Then the obtained main results are applied to demonstrate the existence of optimum solutions of a system of fractional differential equations involving $ \psi $-Hilfer fractional derivatives.
分数阶微分方程系统可解性的最佳接近点方法
本文利用非紧性测度的概念和$ C $-类函数在Banach空间上定义了一类循环(非循环)压缩算子。对于这些新定义的凝聚算子,得到了最佳接近点(对)结果。然后应用所得的主要结果,证明了一类包含$ \psi $-Hilfer分数阶导数的分数阶微分方程组最优解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
9.10%
发文量
45
期刊介绍: The Journal of Applied Analysis and Computation (JAAC) is aimed to publish original research papers and survey articles on the theory, scientific computation and application of nonlinear analysis, differential equations and dynamical systems including interdisciplinary research topics on dynamics of mathematical models arising from major areas of science and engineering. The journal is published quarterly in February, April, June, August, October and December by Shanghai Normal University and Wilmington Scientific Publisher, and issued by Shanghai Normal University.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信