Abolfazl Abdollahi, Biswajeet Pradhan, Abdullah Alamri
{"title":"Regional-Scale Analysis of Vegetation Dynamics Using Satellite Data and Machine Learning Algorithms: A Multi-Factorial Approach","authors":"Abolfazl Abdollahi, Biswajeet Pradhan, Abdullah Alamri","doi":"10.2478/ijssis-2023-0013","DOIUrl":null,"url":null,"abstract":"Abstract Accurate vegetation analysis is crucial amid accelerating global changes and human activities. Achieving precise characterization with multi-temporal Sentinel-2 data is challenging. In this article, we present a comprehensive analysis of 2021's seasonal vegetation cover in Greater Sydney using Google Earth Engine (GEE) to process Sentinel-2 data. Using the random forest (RF) method, we performed image classification for vegetation patterns. Supplementary factors such as topographic elements, texture information, and vegetation indices enhanced the process and overcome limited input variables. Our model outperformed existing methods, offering superior insights into season-based vegetation dynamics. Multi-temporal Sentinel-2 data, topographic elements, vegetation indices, and textural factors proved to be critical for accurate analysis. Leveraging GEE and rich Sentinel-2 data, our study would benefit decision-makers involved in vegetation monitoring.","PeriodicalId":45623,"journal":{"name":"International Journal on Smart Sensing and Intelligent Systems","volume":"70 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Smart Sensing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijssis-2023-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Accurate vegetation analysis is crucial amid accelerating global changes and human activities. Achieving precise characterization with multi-temporal Sentinel-2 data is challenging. In this article, we present a comprehensive analysis of 2021's seasonal vegetation cover in Greater Sydney using Google Earth Engine (GEE) to process Sentinel-2 data. Using the random forest (RF) method, we performed image classification for vegetation patterns. Supplementary factors such as topographic elements, texture information, and vegetation indices enhanced the process and overcome limited input variables. Our model outperformed existing methods, offering superior insights into season-based vegetation dynamics. Multi-temporal Sentinel-2 data, topographic elements, vegetation indices, and textural factors proved to be critical for accurate analysis. Leveraging GEE and rich Sentinel-2 data, our study would benefit decision-makers involved in vegetation monitoring.
期刊介绍:
nternational Journal on Smart Sensing and Intelligent Systems (S2IS) is a rapid and high-quality international forum wherein academics, researchers and practitioners may publish their high-quality, original, and state-of-the-art papers describing theoretical aspects, system architectures, analysis and design techniques, and implementation experiences in intelligent sensing technologies. The journal publishes articles reporting substantive results on a wide range of smart sensing approaches applied to variety of domain problems, including but not limited to: Ambient Intelligence and Smart Environment Analysis, Evaluation, and Test of Smart Sensors Intelligent Management of Sensors Fundamentals of Smart Sensing Principles and Mechanisms Materials and its Applications for Smart Sensors Smart Sensing Applications, Hardware, Software, Systems, and Technologies Smart Sensors in Multidisciplinary Domains and Problems Smart Sensors in Science and Engineering Smart Sensors in Social Science and Humanity