C/C soft-hard mixed preform multi-units compression compaction viscoelastic rebound technique and optimization

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES
Mei Baolong, Dong Jiuzhi, Ren Hongqing, Geng Jian, Jiang Xiuming
{"title":"C/C soft-hard mixed preform multi-units compression compaction viscoelastic rebound technique and optimization","authors":"Mei Baolong, Dong Jiuzhi, Ren Hongqing, Geng Jian, Jiang Xiuming","doi":"10.1177/15280837231206551","DOIUrl":null,"url":null,"abstract":"To address the issue of non-uniform fiber volume fraction between layers in the compression compaction process of C/C soft-hard mixed preforms, a multi-unit variable duration cyclic compression compaction process based on the inter-laminar fiber compression viscoelastic deformation behavior is proposed. This process aims to gradually eliminate the rebound characteristics of inter-laminar fibers and reduce the error of inter-laminar fiber volume fraction. The mapping relationships between the number of units, holding duration, and compaction times with the rebound height of inter-laminar fibers are established using data fitting. The compression compaction process is determined using the Box Behnken response surface design method, and digital devices are utilized for preform compaction experiments. The micro-morphology of the preform is observed using an optical microscope, and the density of inter-laminar fibers before and after process optimization is compared. Experimental results indicate that when the number of units is 3, the holding duration is 57 s, and the compaction times is 2, the fiber volume fraction of the soft-hard mixed preform is 42.90%, which is 12.16% higher than before process optimization, and the error of inter-laminar fiber volume fraction is less than 6.5%.","PeriodicalId":16097,"journal":{"name":"Journal of Industrial Textiles","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Textiles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15280837231206551","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

To address the issue of non-uniform fiber volume fraction between layers in the compression compaction process of C/C soft-hard mixed preforms, a multi-unit variable duration cyclic compression compaction process based on the inter-laminar fiber compression viscoelastic deformation behavior is proposed. This process aims to gradually eliminate the rebound characteristics of inter-laminar fibers and reduce the error of inter-laminar fiber volume fraction. The mapping relationships between the number of units, holding duration, and compaction times with the rebound height of inter-laminar fibers are established using data fitting. The compression compaction process is determined using the Box Behnken response surface design method, and digital devices are utilized for preform compaction experiments. The micro-morphology of the preform is observed using an optical microscope, and the density of inter-laminar fibers before and after process optimization is compared. Experimental results indicate that when the number of units is 3, the holding duration is 57 s, and the compaction times is 2, the fiber volume fraction of the soft-hard mixed preform is 42.90%, which is 12.16% higher than before process optimization, and the error of inter-laminar fiber volume fraction is less than 6.5%.
C/C软硬混合预制体多单元压缩压实粘弹回弹技术及优化
针对C/C软硬混合预制体压缩压实过程中纤维体积分数不均匀的问题,提出了一种基于层间纤维压缩粘弹性变形行为的多单元变长循环压缩压实过程。该工艺旨在逐步消除层间纤维的回弹特性,减小层间纤维体积分数的误差。通过数据拟合,建立了层间纤维的单位数、保持时间和压实次数与回弹高度的映射关系。采用Box Behnken响应面设计方法确定压缩压实过程,并利用数字设备进行预成型压实实验。利用光学显微镜观察了预制体的微观形貌,并比较了工艺优化前后的层间纤维密度。实验结果表明,当单元数为3,保温时间为57 s,压实次数为2次时,软硬混合预制体的纤维体积分数为42.90%,比工艺优化前提高了12.16%,层间纤维体积分数误差小于6.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Industrial Textiles
Journal of Industrial Textiles MATERIALS SCIENCE, TEXTILES-
CiteScore
5.30
自引率
18.80%
发文量
165
审稿时长
2.3 months
期刊介绍: The Journal of Industrial Textiles is the only peer reviewed journal devoted exclusively to technology, processing, methodology, modelling and applications in technical textiles, nonwovens, coated and laminated fabrics, textile composites and nanofibers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信