Xinyu Zhang, Li Xue, Ren Chen, Qiaoli Ma, Dongmei Ma, Xiaoxia Liu
{"title":"Genome-wide identification of the cytochrome P450 family and analysis of CYP regarding salt tolerance in <i>Medicago sativa</i> L.","authors":"Xinyu Zhang, Li Xue, Ren Chen, Qiaoli Ma, Dongmei Ma, Xiaoxia Liu","doi":"10.48130/gr-2023-0021","DOIUrl":null,"url":null,"abstract":"With the ever-changing environment and climate, high salinity has become a major environmental issue that threatens crop quality and yield. Alfalfa (<italic>Medicago sativa</italic> L.) is a perennial forage crop planted worldwide that has a well-developed root system and salt tolerance. Cytochrome P450 monooxygenase (CYP450) genes play important roles in flavonoid synthesis, plant growth, and development. However, few studies have focused on CYP450s in forage grass, especially the role of CYP450 genes in plant resistance to environmental stresses, such as drought and high salinity. In this study, 376 menbers in MsCYP family genes were identified using hmmsearch and BLASTP in the alfalfa protein database using the AtCYP450 protein sequence. Then by exploring MsCYP gene structures, tandem and segmental duplication events, and evolutionary relationships with CYP450s in other plants, potential MsCYPs that respond to salt stress were screened. Candidate genes were selected for transient expression in tobacco and heterologous overexpression in <italic>Arabidopsis</italic> for salinity response. This study provides a foundation for verifying the function of MsCYPs in improving the quality of agricultural products.","PeriodicalId":197485,"journal":{"name":"Grass Research","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grass Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48130/gr-2023-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the ever-changing environment and climate, high salinity has become a major environmental issue that threatens crop quality and yield. Alfalfa (Medicago sativa L.) is a perennial forage crop planted worldwide that has a well-developed root system and salt tolerance. Cytochrome P450 monooxygenase (CYP450) genes play important roles in flavonoid synthesis, plant growth, and development. However, few studies have focused on CYP450s in forage grass, especially the role of CYP450 genes in plant resistance to environmental stresses, such as drought and high salinity. In this study, 376 menbers in MsCYP family genes were identified using hmmsearch and BLASTP in the alfalfa protein database using the AtCYP450 protein sequence. Then by exploring MsCYP gene structures, tandem and segmental duplication events, and evolutionary relationships with CYP450s in other plants, potential MsCYPs that respond to salt stress were screened. Candidate genes were selected for transient expression in tobacco and heterologous overexpression in Arabidopsis for salinity response. This study provides a foundation for verifying the function of MsCYPs in improving the quality of agricultural products.