基于近红外光谱的苹果可溶性固形物特征波长筛选建模对比分析
IF 0.9
4区 物理与天体物理
Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
张金富 Zhang Jinfu, 汤斌 Tang Bin, 王建旭 Wang Jianxu, 传焱霏 Chuan Yanfei, 龙邹荣 Long Zourong, 陈庆 Chen Qing, 缪俊锋 Miao Junfeng, 蔡林峰 Cai Linfeng, 赵明富 Zhao Mingfu, 周密 Zhou Mi
求助PDF
{"title":"基于近红外光谱的苹果可溶性固形物特征波长筛选建模对比分析","authors":"张金富 Zhang Jinfu, 汤斌 Tang Bin, 王建旭 Wang Jianxu, 传焱霏 Chuan Yanfei, 龙邹荣 Long Zourong, 陈庆 Chen Qing, 缪俊锋 Miao Junfeng, 蔡林峰 Cai Linfeng, 赵明富 Zhao Mingfu, 周密 Zhou Mi","doi":"10.3788/lop221956","DOIUrl":null,"url":null,"abstract":"采用近红外光谱进行检测时,光谱波段包含了大量的噪声和散射,这些都影响了模型的稳定性。基于竞争性自适应重加权算法(CARS)和互信息算法(MI)的特征波长筛选方法来建立偏最小二乘(PLS)回归模型,探测苹果内部的可溶性固形物含量(SSC)。通过光谱仪获取800~2400 nm的120个样本的漫反射光谱数据,经过预处理之后的数据通过Kennard-Stone(KS)算法随机选取96个作为校正集,24个作为预测集,然后分别建立全波段PLS模型、CARS-PLS模型和MI-PLS模型来对比分析。结果显示:利用全波段建立PLS模型,模型的决定系数R2为0.8511,模型均方根误差(RMSEC)以及预测均方根误差(RMSEP)分别为0.9413和1.1915;CARS算法筛选的特征波长点变量从303减少到了12,下降了96.03%,建立的PLS模型决定系数R2为0.8746,上升了2.76%,RMSEC和RMSEP分别为0.864和0.9757;MI-PLS模型包含了56个特征波长点,选用的波长占全波长的18.49%,R2、RMSEC和RMSEP分别为0.9218、0.6822和0.8235,MI-PLS与CARS-PLS相比特征波长数增长了64.55%,决定系数R2提高了0.0472。因此CARS和MI算法都能很好地解决光谱数据本身的噪声、散射等问题,可以有效用于特征波段筛选,所建立的模型可以对苹果内部SSC含量进行测定。","PeriodicalId":51502,"journal":{"name":"激光与光电子学进展","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"激光与光电子学进展","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3788/lop221956","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
采用近红外光谱进行检测时,光谱波段包含了大量的噪声和散射,这些都影响了模型的稳定性。基于竞争性自适应重加权算法(CARS)和互信息算法(MI)的特征波长筛选方法来建立偏最小二乘(PLS)回归模型,探测苹果内部的可溶性固形物含量(SSC)。通过光谱仪获取800~2400 nm的120个样本的漫反射光谱数据,经过预处理之后的数据通过Kennard-Stone(KS)算法随机选取96个作为校正集,24个作为预测集,然后分别建立全波段PLS模型、CARS-PLS模型和MI-PLS模型来对比分析。结果显示:利用全波段建立PLS模型,模型的决定系数R2为0.8511,模型均方根误差(RMSEC)以及预测均方根误差(RMSEP)分别为0.9413和1.1915;CARS算法筛选的特征波长点变量从303减少到了12,下降了96.03%,建立的PLS模型决定系数R2为0.8746,上升了2.76%,RMSEC和RMSEP分别为0.864和0.9757;MI-PLS模型包含了56个特征波长点,选用的波长占全波长的18.49%,R2、RMSEC和RMSEP分别为0.9218、0.6822和0.8235,MI-PLS与CARS-PLS相比特征波长数增长了64.55%,决定系数R2提高了0.0472。因此CARS和MI算法都能很好地解决光谱数据本身的噪声、散射等问题,可以有效用于特征波段筛选,所建立的模型可以对苹果内部SSC含量进行测定。
基于近红外光谱的苹果可溶性固形物特征波长筛选建模对比分析
采用近红外光谱进行检测时,光谱波段包含了大量的噪声和散射,这些都影响了模型的稳定性。基于竞争性自适应重加权算法(CARS)和互信息算法(MI)的特征波长筛选方法来建立偏最小二乘(PLS)回归模型,探测苹果内部的可溶性固形物含量(SSC)。通过光谱仪获取800~2400 nm的120个样本的漫反射光谱数据,经过预处理之后的数据通过Kennard-Stone(KS)算法随机选取96个作为校正集,24个作为预测集,然后分别建立全波段PLS模型、CARS-PLS模型和MI-PLS模型来对比分析。结果显示:利用全波段建立PLS模型,模型的决定系数R2为0.8511,模型均方根误差(RMSEC)以及预测均方根误差(RMSEP)分别为0.9413和1.1915;CARS算法筛选的特征波长点变量从303减少到了12,下降了96.03%,建立的PLS模型决定系数R2为0.8746,上升了2.76%,RMSEC和RMSEP分别为0.864和0.9757;MI-PLS模型包含了56个特征波长点,选用的波长占全波长的18.49%,R2、RMSEC和RMSEP分别为0.9218、0.6822和0.8235,MI-PLS与CARS-PLS相比特征波长数增长了64.55%,决定系数R2提高了0.0472。因此CARS和MI算法都能很好地解决光谱数据本身的噪声、散射等问题,可以有效用于特征波段筛选,所建立的模型可以对苹果内部SSC含量进行测定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
来源期刊
期刊介绍:
Laser & Optoelectronics Progress, the first laser and optoelectronics journal published in China. The main columns include general, lasers and laser optics, fiber optics and optical communications, optical design and fabrication, materials, image processing, imaging systems, optical devices, remote sensing and sensors, atmospheric optics and oceanic optics, diffraction and gratings, atomic and molecular physics, detectors, thin films, ultrafast optics, etc. The journal is included in ESCI, INSPEC, Scopus, CSCD, Chinese Core Journals, Chinese Science and Technology Core Journals, and T2 level of the Classified Catalogue of High Quality Science and Technology Journals in Optical Engineering and Optical Fields, and other databases.