Faten N. Al Zubaidi, Lamyaa Mahdi Asaad, Iqbal Alshalal, Mohammed Rasheed
{"title":"The impact of zirconia nanoparticles on the mechanical characteristics of 7075 aluminum alloy","authors":"Faten N. Al Zubaidi, Lamyaa Mahdi Asaad, Iqbal Alshalal, Mohammed Rasheed","doi":"10.1515/jmbm-2022-0302","DOIUrl":null,"url":null,"abstract":"Abstract In numerous engineering applications, metal matrix composites strengthened by ceramic particles have played an important role. For this purpose, an aluminum (Al 7075) nanocomposite has been fabricated, and nano-zirconium oxide of particle size 40 nm (0, 0.8, 1.6, and 2.4) wt% reinforced Al 7075 alloy was produced using a stir-casting process. The effect of ZrO 2 NPs loading on mechanical properties along with the detailed characterization were demonstrated. The performance of Al with ZrO 2 nanocomposite was investigated by Vickers hardness tester, scanning electron microscopy, energy-dispersive X-ray, compression test, Lee’s disc, and Shore D instruments were utilized to determine the hardness, structural morphology, composition of the elements, Young’s modulus, thermal conductivity, and roughness values of the samples, respectively. The hardness (120.3–177) HV, compression strength (624.2–878.6) MPa, yield modulus (38–70) MPa, surface roughness (0.876–0.606) µm, thermal conductivity (2.0–2.39) W/m 2 °C improved by increasing the wt% of ZrO 2 NP reinforcement particles. The implication of these findings shows that 5 wt% nano-ZrO 2 -reinforced Al 7075 composites yielded better performance than pure Al 7075 alloy. To sum up, this investigation demonstrated that the ZrO 2 reinforcement enhanced the mechanical properties of Al 7075.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":"18 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In numerous engineering applications, metal matrix composites strengthened by ceramic particles have played an important role. For this purpose, an aluminum (Al 7075) nanocomposite has been fabricated, and nano-zirconium oxide of particle size 40 nm (0, 0.8, 1.6, and 2.4) wt% reinforced Al 7075 alloy was produced using a stir-casting process. The effect of ZrO 2 NPs loading on mechanical properties along with the detailed characterization were demonstrated. The performance of Al with ZrO 2 nanocomposite was investigated by Vickers hardness tester, scanning electron microscopy, energy-dispersive X-ray, compression test, Lee’s disc, and Shore D instruments were utilized to determine the hardness, structural morphology, composition of the elements, Young’s modulus, thermal conductivity, and roughness values of the samples, respectively. The hardness (120.3–177) HV, compression strength (624.2–878.6) MPa, yield modulus (38–70) MPa, surface roughness (0.876–0.606) µm, thermal conductivity (2.0–2.39) W/m 2 °C improved by increasing the wt% of ZrO 2 NP reinforcement particles. The implication of these findings shows that 5 wt% nano-ZrO 2 -reinforced Al 7075 composites yielded better performance than pure Al 7075 alloy. To sum up, this investigation demonstrated that the ZrO 2 reinforcement enhanced the mechanical properties of Al 7075.
期刊介绍:
The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.