{"title":"High-Order Lohner-Type Algorithm for Rigorous Computation of Poincaré Maps in Systems of Delay Differential Equations with Several Delays","authors":"Robert Szczelina, Piotr Zgliczyński","doi":"10.1007/s10208-023-09614-x","DOIUrl":null,"url":null,"abstract":"Abstract We present a Lohner-type algorithm for rigorous integration of systems of delay differential equations (DDEs) with multiple delays, and its application in computation of Poincaré maps, to study the dynamics of some bounded, eternal solutions. The algorithm is based on a piecewise Taylor representation of the solutions in the phase space, and it exploits the smoothing of solutions occurring in DDEs to produce enclosures of solutions of a high order. We apply the topological techniques to prove various kinds of dynamical behaviour, for example, existence of (apparently) unstable periodic orbits in Mackey–Glass equation (in the regime of parameters where chaos is numerically observed) and persistence of symbolic dynamics in a delay-perturbed chaotic ODE (the Rössler system).","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"379 1","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10208-023-09614-x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We present a Lohner-type algorithm for rigorous integration of systems of delay differential equations (DDEs) with multiple delays, and its application in computation of Poincaré maps, to study the dynamics of some bounded, eternal solutions. The algorithm is based on a piecewise Taylor representation of the solutions in the phase space, and it exploits the smoothing of solutions occurring in DDEs to produce enclosures of solutions of a high order. We apply the topological techniques to prove various kinds of dynamical behaviour, for example, existence of (apparently) unstable periodic orbits in Mackey–Glass equation (in the regime of parameters where chaos is numerically observed) and persistence of symbolic dynamics in a delay-perturbed chaotic ODE (the Rössler system).
期刊介绍:
Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer.
With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles.
The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.