{"title":"A Coinductive Reformulation of Milner's Proof System for Regular Expressions Modulo Bisimilarity","authors":"Clemens Grabmayer","doi":"10.46298/lmcs-19(2:17)2023","DOIUrl":null,"url":null,"abstract":"Milner (1984) defined an operational semantics for regular expressions as finite-state processes. In order to axiomatize bisimilarity of regular expressions under this process semantics, he adapted Salomaa's proof system that is complete for equality of regular expressions under the language semantics. Apart from most equational axioms, Milner's system Mil inherits from Salomaa's system a non-algebraic rule for solving single fixed-point equations. Recognizing distinctive properties of the process semantics that render Salomaa's proof strategy inapplicable, Milner posed completeness of the system Mil as an open question. As a proof-theoretic approach to this problem we characterize the derivational power that the fixed-point rule adds to the purely equational part Mil$^-$ of Mil. We do so by means of a coinductive rule that permits cyclic derivations that consist of a finite process graph with empty steps that satisfies the layered loop existence and elimination property LLEE, and two of its Mil$^{-}$-provable solutions. With this rule as replacement for the fixed-point rule in Mil, we define the coinductive reformulation cMil as an extension of Mil$^{-}$. In order to show that cMil and Mil are theorem equivalent we develop effective proof transformations from Mil to cMil, and vice versa. Since it is located half-way in between bisimulations and proofs in Milner's system Mil, cMil may become a beachhead for a completeness proof of Mil. This article extends our contribution to the CALCO 2022 proceedings. Here we refine the proof transformations by framing them as eliminations of derivable and admissible rules, and we link coinductive proofs to a coalgebraic formulation of solutions of process graphs.","PeriodicalId":49904,"journal":{"name":"Logical Methods in Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logical Methods in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-19(2:17)2023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Milner (1984) defined an operational semantics for regular expressions as finite-state processes. In order to axiomatize bisimilarity of regular expressions under this process semantics, he adapted Salomaa's proof system that is complete for equality of regular expressions under the language semantics. Apart from most equational axioms, Milner's system Mil inherits from Salomaa's system a non-algebraic rule for solving single fixed-point equations. Recognizing distinctive properties of the process semantics that render Salomaa's proof strategy inapplicable, Milner posed completeness of the system Mil as an open question. As a proof-theoretic approach to this problem we characterize the derivational power that the fixed-point rule adds to the purely equational part Mil$^-$ of Mil. We do so by means of a coinductive rule that permits cyclic derivations that consist of a finite process graph with empty steps that satisfies the layered loop existence and elimination property LLEE, and two of its Mil$^{-}$-provable solutions. With this rule as replacement for the fixed-point rule in Mil, we define the coinductive reformulation cMil as an extension of Mil$^{-}$. In order to show that cMil and Mil are theorem equivalent we develop effective proof transformations from Mil to cMil, and vice versa. Since it is located half-way in between bisimulations and proofs in Milner's system Mil, cMil may become a beachhead for a completeness proof of Mil. This article extends our contribution to the CALCO 2022 proceedings. Here we refine the proof transformations by framing them as eliminations of derivable and admissible rules, and we link coinductive proofs to a coalgebraic formulation of solutions of process graphs.
期刊介绍:
Logical Methods in Computer Science is a fully refereed, open access, free, electronic journal. It welcomes papers on theoretical and practical areas in computer science involving logical methods, taken in a broad sense; some particular areas within its scope are listed below. Papers are refereed in the traditional way, with two or more referees per paper. Copyright is retained by the author.
Topics of Logical Methods in Computer Science:
Algebraic methods
Automata and logic
Automated deduction
Categorical models and logic
Coalgebraic methods
Computability and Logic
Computer-aided verification
Concurrency theory
Constraint programming
Cyber-physical systems
Database theory
Defeasible reasoning
Domain theory
Emerging topics: Computational systems in biology
Emerging topics: Quantum computation and logic
Finite model theory
Formalized mathematics
Functional programming and lambda calculus
Inductive logic and learning
Interactive proof checking
Logic and algorithms
Logic and complexity
Logic and games
Logic and probability
Logic for knowledge representation
Logic programming
Logics of programs
Modal and temporal logics
Program analysis and type checking
Program development and specification
Proof complexity
Real time and hybrid systems
Reasoning about actions and planning
Satisfiability
Security
Semantics of programming languages
Term rewriting and equational logic
Type theory and constructive mathematics.