A fast compact difference scheme with unequal time-steps for the tempered time-fractional Black-Scholes model

IF 1.7 4区 数学 Q2 MATHEMATICS, APPLIED
Jinfeng Zhou, Xian-Ming Gu, Yong-Liang Zhao, Hu Li
{"title":"A fast compact difference scheme with unequal time-steps for the tempered time-fractional Black-Scholes model","authors":"Jinfeng Zhou, Xian-Ming Gu, Yong-Liang Zhao, Hu Li","doi":"10.1080/00207160.2023.2254412","DOIUrl":null,"url":null,"abstract":"The Black-Scholes (B-S) equation has been recently extended as a kind of tempered time-fractional B-S equations, which becomes an interesting mathematical model in option pricing. In this study, we provide a fast numerical method to approximate the solution of the tempered time-fractional B-S model. To achieve high-order accuracy in space and overcome the weak initial singularity of exact solution, we combine the compact difference operator with L1-type approximation under nonuniform time steps to yield the numerical scheme. The convergence of the proposed difference scheme is proved to be unconditionally stable. Moreover, the kernel function in the tempered Caputo fractional derivative is approximated by sum-of-exponentials, which leads to a fast unconditionally stable compact difference method that reduces the computational cost. Finally, numerical results demonstrate the effectiveness of the proposed methods.","PeriodicalId":13911,"journal":{"name":"International Journal of Computer Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00207160.2023.2254412","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

The Black-Scholes (B-S) equation has been recently extended as a kind of tempered time-fractional B-S equations, which becomes an interesting mathematical model in option pricing. In this study, we provide a fast numerical method to approximate the solution of the tempered time-fractional B-S model. To achieve high-order accuracy in space and overcome the weak initial singularity of exact solution, we combine the compact difference operator with L1-type approximation under nonuniform time steps to yield the numerical scheme. The convergence of the proposed difference scheme is proved to be unconditionally stable. Moreover, the kernel function in the tempered Caputo fractional derivative is approximated by sum-of-exponentials, which leads to a fast unconditionally stable compact difference method that reduces the computational cost. Finally, numerical results demonstrate the effectiveness of the proposed methods.
缓变时间分数阶Black-Scholes模型的非等时间步长快速紧凑差分格式
Black-Scholes (B-S)方程最近被推广为一种缓变时间分数B-S方程,成为期权定价中一个有趣的数学模型。在本研究中,我们提供了一种快速的数值方法来逼近回火时间分数B-S模型的解。为了在空间上达到高阶精度,克服精确解的弱初始奇异性,我们将紧差分算子与非均匀时间步长下的l1型近似相结合,给出了数值格式。证明了差分格式的收敛性是无条件稳定的。此外,调质Caputo分数阶导数中的核函数用指数和逼近,从而得到了一种快速、无条件稳定的紧差分方法,降低了计算量。最后,数值结果验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
72
审稿时长
5 months
期刊介绍: International Journal of Computer Mathematics (IJCM) is a world-leading journal serving the community of researchers in numerical analysis and scientific computing from academia to industry. IJCM publishes original research papers of high scientific value in fields of computational mathematics with profound applications to science and engineering. IJCM welcomes papers on the analysis and applications of innovative computational strategies as well as those with rigorous explorations of cutting-edge techniques and concerns in computational mathematics. Topics IJCM considers include: • Numerical solutions of systems of partial differential equations • Numerical solution of systems or of multi-dimensional partial differential equations • Theory and computations of nonlocal modelling and fractional partial differential equations • Novel multi-scale modelling and computational strategies • Parallel computations • Numerical optimization and controls • Imaging algorithms and vision configurations • Computational stochastic processes and inverse problems • Stochastic partial differential equations, Monte Carlo simulations and uncertainty quantification • Computational finance and applications • Highly vibrant and robust algorithms, and applications in modern industries, including but not limited to multi-physics, economics and biomedicine. Papers discussing only variations or combinations of existing methods without significant new computational properties or analysis are not of interest to IJCM. Please note that research in the development of computer systems and theory of computing are not suitable for submission to IJCM. Please instead consider International Journal of Computer Mathematics: Computer Systems Theory (IJCM: CST) for your manuscript. Please note that any papers submitted relating to these fields will be transferred to IJCM:CST. Please ensure you submit your paper to the correct journal to save time reviewing and processing your work. Papers developed from Conference Proceedings Please note that papers developed from conference proceedings or previously published work must contain at least 40% new material and significantly extend or improve upon earlier research in order to be considered for IJCM.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信