Embeddings between Partial Combinatory Algebras

IF 0.6 3区 数学 Q2 LOGIC
Anton Golov, Sebastiaan A. Terwijn
{"title":"Embeddings between Partial Combinatory Algebras","authors":"Anton Golov, Sebastiaan A. Terwijn","doi":"10.1215/00294527-2023-0002","DOIUrl":null,"url":null,"abstract":"Partial combinatory algebras (pcas) are algebraic structures that serve as generalized models of computation. In this article, we study embeddings of pcas. In particular, we systematize the embeddings between relativizations of Kleene’s models, of van Oosten’s sequential computation model, and of Scott’s graph model, showing that an embedding between two relativized models exists if and only if there exists a particular reduction between the oracles. We obtain a similar result for the lambda calculus, showing in particular that it cannot be embedded in Kleene’s first model.","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":"3 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notre Dame Journal of Formal Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00294527-2023-0002","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

Partial combinatory algebras (pcas) are algebraic structures that serve as generalized models of computation. In this article, we study embeddings of pcas. In particular, we systematize the embeddings between relativizations of Kleene’s models, of van Oosten’s sequential computation model, and of Scott’s graph model, showing that an embedding between two relativized models exists if and only if there exists a particular reduction between the oracles. We obtain a similar result for the lambda calculus, showing in particular that it cannot be embedded in Kleene’s first model.
部分组合代数之间的嵌入
部分组合代数(pcas)是作为广义计算模型的代数结构。在本文中,我们研究了pca的嵌入。特别地,我们将Kleene的模型、van Oosten的顺序计算模型和Scott的图模型的相对化之间的嵌入系统化,表明当且仅当两个相对化模型之间存在特定的约简时存在嵌入。对于lambda演算,我们得到了类似的结果,特别表明它不能嵌入到Kleene的第一个模型中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
14.30%
发文量
14
审稿时长
>12 weeks
期刊介绍: The Notre Dame Journal of Formal Logic, founded in 1960, aims to publish high quality and original research papers in philosophical logic, mathematical logic, and related areas, including papers of compelling historical interest. The Journal is also willing to selectively publish expository articles on important current topics of interest as well as book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信