SOME COUNTING QUESTIONS FOR MATRIX PRODUCTS

IF 0.6 4区 数学 Q3 MATHEMATICS
MUHAMMAD AFIFURRAHMAN
{"title":"SOME COUNTING QUESTIONS FOR MATRIX PRODUCTS","authors":"MUHAMMAD AFIFURRAHMAN","doi":"10.1017/s0004972723001004","DOIUrl":null,"url":null,"abstract":"Abstract Given a set X of $n\\times n$ matrices and a positive integer m , we consider the problem of estimating the cardinalities of the product sets $A_1 \\cdots A_m$ , where $A_i\\in X$ . When $X={\\mathcal M}_n(\\mathbb {Z};H)$ , the set of $n\\times n$ matrices with integer elements of size at most H , we give several bounds on the cardinalities of the product sets and solution sets of related equations such as $A_1 \\cdots A_m=C$ and $A_1 \\cdots A_m=B_1 \\cdots B_m$ . We also consider the case where X is the subset of matrices in ${\\mathcal M}_n(\\mathbb {F})$ , where $\\mathbb {F}$ is a field with bounded rank $k\\leq n$ . In this case, we completely classify the related product set.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"3 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0004972723001004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Given a set X of $n\times n$ matrices and a positive integer m , we consider the problem of estimating the cardinalities of the product sets $A_1 \cdots A_m$ , where $A_i\in X$ . When $X={\mathcal M}_n(\mathbb {Z};H)$ , the set of $n\times n$ matrices with integer elements of size at most H , we give several bounds on the cardinalities of the product sets and solution sets of related equations such as $A_1 \cdots A_m=C$ and $A_1 \cdots A_m=B_1 \cdots B_m$ . We also consider the case where X is the subset of matrices in ${\mathcal M}_n(\mathbb {F})$ , where $\mathbb {F}$ is a field with bounded rank $k\leq n$ . In this case, we completely classify the related product set.
矩阵乘积的几个计数问题
给定一个由$n\times n$矩阵组成的集合X和一个正整数m,我们考虑乘积集合$A_1 \cdots A_m$的基数估计问题,其中$A_i\in X$。当$X={\mathcal M}_n(\mathbb {Z};H)$是大小不超过H的整数元素的$n\times n$矩阵的集合时,我们给出了相关方程(如$A_1 \cdots A_m=C$和$A_1 \cdots A_m=B_1 \cdots B_m$)的乘积集和解集的基数的几个界。我们还考虑X是${\mathcal M}_n(\mathbb {F})$中矩阵的子集的情况,其中$\mathbb {F}$是一个有界秩$k\leq n$的域。在这种情况下,我们完全分类相关的产品集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信