{"title":"Machine Learning: Models, Challenges, and Research Directions","authors":"Tala Talaei Khoei, Naima Kaabouch","doi":"10.3390/fi15100332","DOIUrl":null,"url":null,"abstract":"Machine learning techniques have emerged as a transformative force, revolutionizing various application domains, particularly cybersecurity. The development of optimal machine learning applications requires the integration of multiple processes, such as data pre-processing, model selection, and parameter optimization. While existing surveys have shed light on these techniques, they have mainly focused on specific application domains. A notable gap that exists in current studies is the lack of a comprehensive overview of machine learning architecture and its essential phases in the cybersecurity field. To address this gap, this survey provides a holistic review of current studies in machine learning, covering techniques applicable to any domain. Models are classified into four categories: supervised, semi-supervised, unsupervised, and reinforcement learning. Each of these categories and their models are described. In addition, the survey discusses the current progress related to data pre-processing and hyperparameter tuning techniques. Moreover, this survey identifies and reviews the research gaps and key challenges that the cybersecurity field faces. By analyzing these gaps, we propose some promising research directions for the future. Ultimately, this survey aims to serve as a valuable resource for researchers interested in learning about machine learning, providing them with insights to foster innovation and progress across diverse application domains.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"63 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15100332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning techniques have emerged as a transformative force, revolutionizing various application domains, particularly cybersecurity. The development of optimal machine learning applications requires the integration of multiple processes, such as data pre-processing, model selection, and parameter optimization. While existing surveys have shed light on these techniques, they have mainly focused on specific application domains. A notable gap that exists in current studies is the lack of a comprehensive overview of machine learning architecture and its essential phases in the cybersecurity field. To address this gap, this survey provides a holistic review of current studies in machine learning, covering techniques applicable to any domain. Models are classified into four categories: supervised, semi-supervised, unsupervised, and reinforcement learning. Each of these categories and their models are described. In addition, the survey discusses the current progress related to data pre-processing and hyperparameter tuning techniques. Moreover, this survey identifies and reviews the research gaps and key challenges that the cybersecurity field faces. By analyzing these gaps, we propose some promising research directions for the future. Ultimately, this survey aims to serve as a valuable resource for researchers interested in learning about machine learning, providing them with insights to foster innovation and progress across diverse application domains.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.