{"title":"Simulations of Physically Surface-Patterned Membranes for Water Treatment: Recent Advances","authors":"Devandar Chauhan, Prashant Kumar Nagar, Kamakshi Pandey, Kamlendra Awasthi, Harsh Pandey","doi":"10.1080/15422119.2023.2259899","DOIUrl":null,"url":null,"abstract":"ABSTRACTSurface-patterned membranes are becoming increasingly attractive for reducing fouling in membrane processes for water treatment. In this review article, literature on simulations of physically surface-patterned membranes is reviewed, with emphasis on the various factors affecting their anti-fouling performance. Associated computational techniques, including computational fluid dynamics and Brownian dynamics, are discussed. Key parameters discussed in the literature include the dimensions of the membrane (height, width), the velocity and direction of the fluid flow, the size of the particles, and the pattern size (height, width, and pitch). The key observables are the shear stress and velocity streamlines at various points, especially the pattern apex and valley regions, with an un-patterned membrane as a point of comparison in studies. The review concludes that the pattern dimensions have the most significant influence on the anti-fouling performance. Also, the effect of particle size to membrane pattern ratio on the extent of particle deposition on the membrane (fouling activity) can be explained by understanding the shear stress distribution around the membrane.KEYWORDS: Patterned membraneanti-foulingsimulationComputational fluid dynamics (CFD)Brownian dynamics (BD) AcknowledgmentsDC is thankful to the Ministry of Education, India, for providing research fellowship.Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":49539,"journal":{"name":"Separation and Purification Reviews","volume":"22 1","pages":"0"},"PeriodicalIF":5.2000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15422119.2023.2259899","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTSurface-patterned membranes are becoming increasingly attractive for reducing fouling in membrane processes for water treatment. In this review article, literature on simulations of physically surface-patterned membranes is reviewed, with emphasis on the various factors affecting their anti-fouling performance. Associated computational techniques, including computational fluid dynamics and Brownian dynamics, are discussed. Key parameters discussed in the literature include the dimensions of the membrane (height, width), the velocity and direction of the fluid flow, the size of the particles, and the pattern size (height, width, and pitch). The key observables are the shear stress and velocity streamlines at various points, especially the pattern apex and valley regions, with an un-patterned membrane as a point of comparison in studies. The review concludes that the pattern dimensions have the most significant influence on the anti-fouling performance. Also, the effect of particle size to membrane pattern ratio on the extent of particle deposition on the membrane (fouling activity) can be explained by understanding the shear stress distribution around the membrane.KEYWORDS: Patterned membraneanti-foulingsimulationComputational fluid dynamics (CFD)Brownian dynamics (BD) AcknowledgmentsDC is thankful to the Ministry of Education, India, for providing research fellowship.Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
Separation & Purification Reviews provides comprehensive summaries and interdisciplinary viewpoints of significant developments in all areas of separation and purification, including innovative methods, apparatus, theories, and applications. The journal presents reviews that cover a large amount of scientific/technical information in a concise and organized manner on topics such as adsorption, centrifugation, chromatography, crystallization, distillation, extraction, filtration, ion exchange, membrane separations of solid, liquid or gaseous materials.