{"title":"Distributed Muskingum model with a Whale Optimization Algorithm for river flood routing","authors":"Vida Atashi, Reza Barati, Yeo Howe Lim","doi":"10.2166/hydro.2023.029","DOIUrl":null,"url":null,"abstract":"Abstract This research introduces a novel nonlinear Muskingum model for river flood routing, aiming to enhance accuracy in modeling. It integrates lateral inflows using the Whale Optimization Algorithm (WOA) and employs a distributed Muskingum model, dividing river reaches into smaller intervals for precise calculations. The primary goal is to minimize the Sum of Square Errors (SSE) between the observed and modeled outflows. Our methodology is applied to six distinct flood hydrographs, revealing its versatility and efficacy. For Lawler's and Dinavar's flood data, the single-reach Muskingum model outperforms multi-reach versions, demonstrating its effectiveness in handling lateral inflows. For Lawler's data, the single-reach model (NR = 1) yields optimal parameters of K = 0.392, x = 0.027, m = 1.511, and β = 0.010, delivering superior results. Conversely, when fitting flood data from Wilson, Wye, Linsley, and Viessman and Lewis, the multi-reach Muskingum model exhibits better overall performance. Remarkably, the model excels with the Viessman and Lewis flood data, especially with two reaches (NR = 2), achieving a 21.6% SSE improvement while employing the same parameter set. This research represents a significant advancement in flood modeling, offering heightened accuracy and adaptability in river flood routing.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"50 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/hydro.2023.029","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract This research introduces a novel nonlinear Muskingum model for river flood routing, aiming to enhance accuracy in modeling. It integrates lateral inflows using the Whale Optimization Algorithm (WOA) and employs a distributed Muskingum model, dividing river reaches into smaller intervals for precise calculations. The primary goal is to minimize the Sum of Square Errors (SSE) between the observed and modeled outflows. Our methodology is applied to six distinct flood hydrographs, revealing its versatility and efficacy. For Lawler's and Dinavar's flood data, the single-reach Muskingum model outperforms multi-reach versions, demonstrating its effectiveness in handling lateral inflows. For Lawler's data, the single-reach model (NR = 1) yields optimal parameters of K = 0.392, x = 0.027, m = 1.511, and β = 0.010, delivering superior results. Conversely, when fitting flood data from Wilson, Wye, Linsley, and Viessman and Lewis, the multi-reach Muskingum model exhibits better overall performance. Remarkably, the model excels with the Viessman and Lewis flood data, especially with two reaches (NR = 2), achieving a 21.6% SSE improvement while employing the same parameter set. This research represents a significant advancement in flood modeling, offering heightened accuracy and adaptability in river flood routing.
期刊介绍:
Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.