Extremal Cata-Condensed Benzenoids with Two Full-Hexagons with Respect to the Mostar indices

IF 2.4 3区 化学 Q2 CHEMISTRY, ORGANIC
{"title":"Extremal Cata-Condensed Benzenoids with Two Full-Hexagons with Respect to the Mostar indices","authors":"","doi":"10.1080/10406638.2023.2266182","DOIUrl":null,"url":null,"abstract":"<div><div>The Mostar index <span><math><mrow><mi>M</mi><mi>o</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math></span> is the sum of absolute values of the differences between <span><math><mrow><mrow><msub><mrow><mi>n</mi></mrow><mi>u</mi></msub></mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></math></span> and <span><math><mrow><mrow><msub><mrow><mi>n</mi></mrow><mi>v</mi></msub></mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></math></span> over all edges <span><math><mrow><mi>e</mi><mo>=</mo><mi>u</mi><mi>v</mi></mrow></math></span> of <em>G</em>, where <span><math><mrow><mrow><msub><mrow><mi>n</mi></mrow><mi>u</mi></msub></mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></math></span> and <span><math><mrow><mrow><msub><mrow><mi>n</mi></mrow><mi>v</mi></msub></mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></math></span> are the number of vertices of <em>G</em> lying closer to vertex <em>u</em> than to vertex <em>v</em> and the number of vertices of <em>G</em> lying closer to vertex <em>v</em> than to vertex <em>u</em>, respectively. In this article, for given cata-condensed hexagonal systems with <em>p</em> hexagons, which have exactly two full-hexagons, we determine the extremal hexagonal system with the greatest Mostar index, and the corresponding formula of Mostar index is given.</div></div>","PeriodicalId":20303,"journal":{"name":"Polycyclic Aromatic Compounds","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polycyclic Aromatic Compounds","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1040663823020559","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

The Mostar index Mo(G) is the sum of absolute values of the differences between nu(e) and nv(e) over all edges e=uv of G, where nu(e) and nv(e) are the number of vertices of G lying closer to vertex u than to vertex v and the number of vertices of G lying closer to vertex v than to vertex u, respectively. In this article, for given cata-condensed hexagonal systems with p hexagons, which have exactly two full-hexagons, we determine the extremal hexagonal system with the greatest Mostar index, and the corresponding formula of Mostar index is given.
相对于莫斯塔尔指数,具有两个全六角形的极值卡塔缩合苯并呋喃
莫斯塔尔指数 Mo(G)是 G 的所有边 e=uv 上 nu(e)和 nv(e)之差的绝对值之和,其中 nu(e)和 nv(e)分别是 G 中靠近顶点 u 而不是顶点 v 的顶点数,以及 G 中靠近顶点 v 而不是顶点 u 的顶点数。本文针对具有 p 个六边形且恰好有两个全六边形的卡塔缩合六边形系统,确定了莫斯塔尔指数最大的极值六边形系统,并给出了相应的莫斯塔尔指数公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polycyclic Aromatic Compounds
Polycyclic Aromatic Compounds 化学-有机化学
CiteScore
3.70
自引率
20.80%
发文量
412
审稿时长
3 months
期刊介绍: The purpose of Polycyclic Aromatic Compounds is to provide an international and interdisciplinary forum for all aspects of research related to polycyclic aromatic compounds (PAC). Topics range from fundamental research in chemistry (including synthetic and theoretical chemistry) and physics (including astrophysics), as well as thermodynamics, spectroscopy, analytical methods, and biology to applied studies in environmental science, biochemistry, toxicology, and industry. Polycyclic Aromatic Compounds has an outstanding Editorial Board and offers a rapid and efficient peer review process, as well as a flexible open access policy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信