Adaptive warehouse storage location assignment with considerations to order-picking efficiency and worker safety

IF 4 Q2 ENGINEERING, INDUSTRIAL
Amir Zarinchang, Kevin Lee, Iman Avazpour, Jun Yang, Dongxing Zhang, George K. Knopf
{"title":"Adaptive warehouse storage location assignment with considerations to order-picking efficiency and worker safety","authors":"Amir Zarinchang, Kevin Lee, Iman Avazpour, Jun Yang, Dongxing Zhang, George K. Knopf","doi":"10.1080/21681015.2023.2263009","DOIUrl":null,"url":null,"abstract":"Smart warehouses require software-based decision-making tools to manage the receiving, storing, and picking of products. A major challenge in achieving efficient operations is deciding where to store products associated with incoming orders. The storage location assignment problem (SLAP) is more complex in large-size warehouses due to several functional objectives and numerous possible shelving solutions. This paper introduces an artificial intelligence algorithm that seeks to find an acceptable solution to SLAP with presented linear and nonlinear objective functions. The near-optimal technique exploits basin-hopping and simulated-annealing algorithms to find a solution when considering four functional objectives including worker safety, which has not been optimized using similar approaches. The algorithm is experimentally evaluated, and results demonstrate that reasonablely achieved solutions are comparable to those obtained by well-known existing solvers. Furthermore, the problem could be solved with non-linear objectives which is beyond the commercial solvers’ like SCIP capability.","PeriodicalId":16024,"journal":{"name":"Journal of Industrial and Production Engineering","volume":"38 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Production Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21681015.2023.2263009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Smart warehouses require software-based decision-making tools to manage the receiving, storing, and picking of products. A major challenge in achieving efficient operations is deciding where to store products associated with incoming orders. The storage location assignment problem (SLAP) is more complex in large-size warehouses due to several functional objectives and numerous possible shelving solutions. This paper introduces an artificial intelligence algorithm that seeks to find an acceptable solution to SLAP with presented linear and nonlinear objective functions. The near-optimal technique exploits basin-hopping and simulated-annealing algorithms to find a solution when considering four functional objectives including worker safety, which has not been optimized using similar approaches. The algorithm is experimentally evaluated, and results demonstrate that reasonablely achieved solutions are comparable to those obtained by well-known existing solvers. Furthermore, the problem could be solved with non-linear objectives which is beyond the commercial solvers’ like SCIP capability.
考虑到拣货效率和工人安全的适应性仓库位置分配
智能仓库需要基于软件的决策工具来管理产品的接收、存储和挑选。实现高效操作的一个主要挑战是决定在哪里存储与传入订单相关的产品。在大型仓库中,由于多个功能目标和多种可能的货架解决方案,存储位置分配问题(SLAP)更加复杂。本文介绍了一种人工智能算法,该算法利用给定的线性和非线性目标函数寻求可接受的SLAP解。近最优技术利用盆地跳跃和模拟退火算法,在考虑包括工人安全在内的四个功能目标时找到解决方案,这些目标尚未使用类似的方法进行优化。实验验证了该算法的有效性,结果表明,该算法所得到的解与现有的知名求解器所得到的解相当。此外,该问题还可以用非线性目标来求解,这超出了商业求解器(如SCIP)的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
6.70%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信