{"title":"Remote quantification of the trophic status of Chinese lakes","authors":"Sijia Li, Shiqi Xu, Kaishan Song, Tiit Kutser, Zhidan Wen, Ge Liu, Yingxin Shang, Lili Lyu, Hui Tao, Xiang Wang, Lele Zhang, Fangfang Chen","doi":"10.5194/hess-27-3581-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Assessing eutrophication in lakes is of key importance, as this parameter constitutes a major aquatic ecosystem integrity indicator. The trophic state index (TSI), which is widely used to quantify eutrophication, is a universal paradigm in the scientific literature. In this study, a methodological framework is proposed for quantifying and mapping TSI using the Sentinel Multispectral Imager sensor and fieldwork samples. The first step of the methodology involves the implementation of stepwise multiple regression analysis of the available TSI dataset to find some band ratios, such as blue/red, green/red and red/red, which are sensitive to lake TSI. Trained with in situ measured TSI and match-up Sentinel images, we established the XGBoost of machine learning approaches to estimate TSI, with good agreement (R2= 0.87, slope = 0.85) and fewer errors (MAE = 3.15 and RMSE = 4.11). Additionally, we discussed the transferability and applications of XGBoost in three lake classifications: water quality, absorption contribution and reflectance spectra types. We selected XGBoost to map TSI in 2019–2020 with good-quality Sentinel-2 Level-1C images embedded in the ESA to examine the spatiotemporal variations of the lake trophic state. In a large-scale observation, 10 m TSI products from 555 lakes in China facing eutrophication and unbalanced spatial patterns associated with lake basin characteristics, climate and anthropogenic activities were investigated. The methodological framework proposed herein could serve as a useful resource for continuous, long-term and large-scale monitoring of lake aquatic ecosystems, supporting sustainable water resource management.","PeriodicalId":13143,"journal":{"name":"Hydrology and Earth System Sciences","volume":"66 1","pages":"0"},"PeriodicalIF":5.7000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology and Earth System Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/hess-27-3581-2023","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract. Assessing eutrophication in lakes is of key importance, as this parameter constitutes a major aquatic ecosystem integrity indicator. The trophic state index (TSI), which is widely used to quantify eutrophication, is a universal paradigm in the scientific literature. In this study, a methodological framework is proposed for quantifying and mapping TSI using the Sentinel Multispectral Imager sensor and fieldwork samples. The first step of the methodology involves the implementation of stepwise multiple regression analysis of the available TSI dataset to find some band ratios, such as blue/red, green/red and red/red, which are sensitive to lake TSI. Trained with in situ measured TSI and match-up Sentinel images, we established the XGBoost of machine learning approaches to estimate TSI, with good agreement (R2= 0.87, slope = 0.85) and fewer errors (MAE = 3.15 and RMSE = 4.11). Additionally, we discussed the transferability and applications of XGBoost in three lake classifications: water quality, absorption contribution and reflectance spectra types. We selected XGBoost to map TSI in 2019–2020 with good-quality Sentinel-2 Level-1C images embedded in the ESA to examine the spatiotemporal variations of the lake trophic state. In a large-scale observation, 10 m TSI products from 555 lakes in China facing eutrophication and unbalanced spatial patterns associated with lake basin characteristics, climate and anthropogenic activities were investigated. The methodological framework proposed herein could serve as a useful resource for continuous, long-term and large-scale monitoring of lake aquatic ecosystems, supporting sustainable water resource management.
期刊介绍:
Hydrology and Earth System Sciences (HESS) is a not-for-profit international two-stage open-access journal for the publication of original research in hydrology. HESS encourages and supports fundamental and applied research that advances the understanding of hydrological systems, their role in providing water for ecosystems and society, and the role of the water cycle in the functioning of the Earth system. A multi-disciplinary approach is encouraged that broadens the hydrological perspective and the advancement of hydrological science through integration with other cognate sciences and cross-fertilization across disciplinary boundaries.