A theorem of Gordan and Noether via Gorenstein rings

IF 1.2 2区 数学 Q1 MATHEMATICS
Davide Bricalli, Filippo Francesco Favale, Gian Pietro Pirola
{"title":"A theorem of Gordan and Noether via Gorenstein rings","authors":"Davide Bricalli, Filippo Francesco Favale, Gian Pietro Pirola","doi":"10.1007/s00029-023-00882-7","DOIUrl":null,"url":null,"abstract":"Abstract Gordan and Noether proved in their fundamental theorem that an hypersurface $$X=V(F)\\subseteq {{\\mathbb {P}}}^n$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>X</mml:mi> <mml:mo>=</mml:mo> <mml:mi>V</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>F</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>⊆</mml:mo> <mml:msup> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> </mml:math> with $$n\\le 3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:math> is a cone if and only if F has vanishing hessian (i.e. the determinant of the Hessian matrix). They also showed that the statement is false if $$n\\ge 4$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:math> , by giving some counterexamples. Since their proof, several others have been proposed in the literature. In this paper we give a new one by using a different perspective which involves the study of standard Artinian Gorenstein $${{\\mathbb {K}}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>K</mml:mi> </mml:math> -algebras and the Lefschetz properties. As a further application of our setting, we prove that a standard Artinian Gorenstein algebra $$R={{\\mathbb {K}}}[x_0,\\dots ,x_4]/J$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:mo>=</mml:mo> <mml:mi>K</mml:mi> <mml:mo>[</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>4</mml:mn> </mml:msub> <mml:mo>]</mml:mo> <mml:mo>/</mml:mo> <mml:mi>J</mml:mi> </mml:mrow> </mml:math> with J generated by a regular sequence of quadrics has the strong Lefschetz property. In particular, this holds for Jacobian rings associated to smooth cubic threefolds.","PeriodicalId":49551,"journal":{"name":"Selecta Mathematica-New Series","volume":"62 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica-New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00882-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract Gordan and Noether proved in their fundamental theorem that an hypersurface $$X=V(F)\subseteq {{\mathbb {P}}}^n$$ X = V ( F ) P n with $$n\le 3$$ n 3 is a cone if and only if F has vanishing hessian (i.e. the determinant of the Hessian matrix). They also showed that the statement is false if $$n\ge 4$$ n 4 , by giving some counterexamples. Since their proof, several others have been proposed in the literature. In this paper we give a new one by using a different perspective which involves the study of standard Artinian Gorenstein $${{\mathbb {K}}}$$ K -algebras and the Lefschetz properties. As a further application of our setting, we prove that a standard Artinian Gorenstein algebra $$R={{\mathbb {K}}}[x_0,\dots ,x_4]/J$$ R = K [ x 0 , , x 4 ] / J with J generated by a regular sequence of quadrics has the strong Lefschetz property. In particular, this holds for Jacobian rings associated to smooth cubic threefolds.
Gordan和Noether通过Gorenstein环的定理
Gordan和Noether在其基本定理中证明了$$n\le 3$$ n≤3的超曲面$$X=V(F)\subseteq {{\mathbb {P}}}^n$$ X = V (F)≥P n是锥当且仅当F具有消失的hessian(即hessian矩阵的行列式)。他们还通过给出一些反例,证明了如果$$n\ge 4$$ n≥4,该陈述是错误的。在他们的证明之后,文献中又提出了其他几个证明。本文从一个不同的角度给出了一个新的代数,它涉及到对标准的Artinian Gorenstein $${{\mathbb {K}}}$$ K -代数和Lefschetz性质的研究。作为我们的设置的进一步应用,我们证明了一个标准的Artinian Gorenstein代数$$R={{\mathbb {K}}}[x_0,\dots ,x_4]/J$$ R = K [x 0,⋯,x 4] / J,其中由正则二次序列生成的J具有强Lefschetz性质。特别地,这适用于与光滑三次折叠相关的雅可比环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
68
审稿时长
>12 weeks
期刊介绍: Selecta Mathematica, New Series is a peer-reviewed journal addressed to a wide mathematical audience. It accepts well-written high quality papers in all areas of pure mathematics, and selected areas of applied mathematics. The journal especially encourages submission of papers which have the potential of opening new perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信