Nixian Qian, Chunhua Chen, Yonghui Zhou, Shuyang Wang, Liangyu Li, Ranran Zhang, Xiangde Zhu, Yifang Yuan, Xuliang Chen, Chao An, Ying Zhou, Min Zhang, Xiaoping Yang, Zhaorong Yang
{"title":"Two high-pressure superconducting phases in pressurized optical semiconductor GaP","authors":"Nixian Qian, Chunhua Chen, Yonghui Zhou, Shuyang Wang, Liangyu Li, Ranran Zhang, Xiangde Zhu, Yifang Yuan, Xuliang Chen, Chao An, Ying Zhou, Min Zhang, Xiaoping Yang, Zhaorong Yang","doi":"10.1038/s41427-023-00506-8","DOIUrl":null,"url":null,"abstract":"Abstract Pressure engineering in semiconductors leads to a variety of novel physical phenomena and has recently received considerable attention. Here, we report on pressure-induced superconductivity in III–V gallium phosphide (GaP), a commercially important semiconductor that exhibits excellent optical performance. We show that the emergence of superconductivity is accompanied by the concurrence of piezochromic transition and metallization and can be correlated to a structural transition from the cubic to orthorhombic phase. In line with the structural origin of superconductivity, the critical temperature T c monotonically decreases with increasing pressure up to ~50 GPa. Moreover, the superconductivity could be preserved toward ambient pressure because of the irreversibility of the structural transition. Nevertheless, the superconducting transition displays evident broadening associated with the presence of amorphization in the depressurized sample. The synchronous evolution of the structural and electronic properties not only shows a vivid structure-property relationship but also could facilitate the exploration of novel functionalities by means of pressure treatment.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 6","pages":"0"},"PeriodicalIF":8.6000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41427-023-00506-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Pressure engineering in semiconductors leads to a variety of novel physical phenomena and has recently received considerable attention. Here, we report on pressure-induced superconductivity in III–V gallium phosphide (GaP), a commercially important semiconductor that exhibits excellent optical performance. We show that the emergence of superconductivity is accompanied by the concurrence of piezochromic transition and metallization and can be correlated to a structural transition from the cubic to orthorhombic phase. In line with the structural origin of superconductivity, the critical temperature T c monotonically decreases with increasing pressure up to ~50 GPa. Moreover, the superconductivity could be preserved toward ambient pressure because of the irreversibility of the structural transition. Nevertheless, the superconducting transition displays evident broadening associated with the presence of amorphization in the depressurized sample. The synchronous evolution of the structural and electronic properties not only shows a vivid structure-property relationship but also could facilitate the exploration of novel functionalities by means of pressure treatment.
期刊介绍:
NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.