SRMD: Sparse Random Mode Decomposition

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Nicholas Richardson, Hayden Schaeffer, Giang Tran
{"title":"SRMD: Sparse Random Mode Decomposition","authors":"Nicholas Richardson, Hayden Schaeffer, Giang Tran","doi":"10.1007/s42967-023-00273-x","DOIUrl":null,"url":null,"abstract":"Signal decomposition and multiscale signal analysis provide many useful tools for time-frequency analysis. We proposed a random feature method for analyzing time-series data by constructing a sparse approximation to the spectrogram. The randomization is both in the time window locations and the frequency sampling, which lowers the overall sampling and computational cost. The sparsification of the spectrogram leads to a sharp separation between time-frequency clusters which makes it easier to identify intrinsic modes, and thus leads to a new data-driven mode decomposition. The applications include signal representation, outlier removal, and mode decomposition. On benchmark tests, we show that our approach outperforms other state-of-the-art decomposition methods.","PeriodicalId":29916,"journal":{"name":"Communications on Applied Mathematics and Computation","volume":"275 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Mathematics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42967-023-00273-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

Signal decomposition and multiscale signal analysis provide many useful tools for time-frequency analysis. We proposed a random feature method for analyzing time-series data by constructing a sparse approximation to the spectrogram. The randomization is both in the time window locations and the frequency sampling, which lowers the overall sampling and computational cost. The sparsification of the spectrogram leads to a sharp separation between time-frequency clusters which makes it easier to identify intrinsic modes, and thus leads to a new data-driven mode decomposition. The applications include signal representation, outlier removal, and mode decomposition. On benchmark tests, we show that our approach outperforms other state-of-the-art decomposition methods.
SRMD:稀疏随机模式分解
信号分解和多尺度信号分析为时频分析提供了许多有用的工具。本文提出了一种随机特征分析方法,通过构造谱图的稀疏逼近来分析时间序列数据。随机化既体现在时间窗位置上,也体现在采样频率上,降低了总体采样和计算成本。谱图的稀疏化导致时频簇之间的明显分离,使其更容易识别固有模式,从而导致新的数据驱动模式分解。应用包括信号表示、异常值去除和模态分解。在基准测试中,我们表明我们的方法优于其他最先进的分解方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.20%
发文量
523
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信