{"title":"Numerical studies for effect of geometrical parameters on water jet pump performance via entropy generation analysis","authors":"Muhammad Penta Helios, Wanchai Asvapoositkul","doi":"10.15282/jmes.15.3.2021.10.0654","DOIUrl":null,"url":null,"abstract":"This paper presented an implementation of entropy generation analysis in the main flow field of a water jet pump via the CFD method. This study aimed to identify the inefficient location of energy conversion and to analyse entropy generation sources in each region of the water jet pump. The 2D-axisymmetric model and realisable k-ε (RKE) turbulence model at steady-state conditions were performed to validate jet pump performance and to assess the entropy generation. Likewise, the effects of the projection ratio and throat-aspect ratio as independent parameters were investigated. As a result, the throat is the most inefficient part due to the high total entropy generation rate, following by diffuser part. Also, the entropy generation rate was assessed dominant than viscous dissipation due to the turbulent dissipation, which was caused by a turbulent shear stress layer of mixing the streams. In conclusion, the projection ratio influenced the growth of the shear stress layer as well as the entropy generation. Further, the throat-aspect ratio affected the distribution of entropy generation in the throat section. An appropriate combination of both parameters has an impact on the jet pump performance improvements reducing the entropy generation rate in the future.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":"147 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jmes.15.3.2021.10.0654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presented an implementation of entropy generation analysis in the main flow field of a water jet pump via the CFD method. This study aimed to identify the inefficient location of energy conversion and to analyse entropy generation sources in each region of the water jet pump. The 2D-axisymmetric model and realisable k-ε (RKE) turbulence model at steady-state conditions were performed to validate jet pump performance and to assess the entropy generation. Likewise, the effects of the projection ratio and throat-aspect ratio as independent parameters were investigated. As a result, the throat is the most inefficient part due to the high total entropy generation rate, following by diffuser part. Also, the entropy generation rate was assessed dominant than viscous dissipation due to the turbulent dissipation, which was caused by a turbulent shear stress layer of mixing the streams. In conclusion, the projection ratio influenced the growth of the shear stress layer as well as the entropy generation. Further, the throat-aspect ratio affected the distribution of entropy generation in the throat section. An appropriate combination of both parameters has an impact on the jet pump performance improvements reducing the entropy generation rate in the future.
期刊介绍:
The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.