Solar-Driven Upgrading of Biomass by Coupled Hydrogenation Using in Situ Photoelectrochemically Generated H2

Keisuke Obata, Xinyi Zhang, Tabea Thiel, Michael Schwarze, Reinhard Schomäcker, Roel van de Krol, Fatwa Firdaus Abdi
{"title":"Solar-Driven Upgrading of Biomass by Coupled Hydrogenation Using in Situ Photoelectrochemically Generated H<sub>2</sub>","authors":"Keisuke Obata, Xinyi Zhang, Tabea Thiel, Michael Schwarze, Reinhard Schomäcker, Roel van de Krol, Fatwa Firdaus Abdi","doi":"10.1149/ma2023-01372128mtgabs","DOIUrl":null,"url":null,"abstract":"Green H 2 has been recognized as an important element in efforts to decarbonize our fossil fuel-dependent society. One approach to produce green H 2 is solar water splitting in a photoelectrochemical (PEC) device. Solar-to-hydrogen (STH) efficiencies of up to 30% have been demonstrated 1 but studies have shown that this approach still results in a relatively high levelized cost of hydrogen (LCOH) of ~10 US$ per kg of H 2 . 2-3 This is ca. one order of magnitude higher than that of hydrogen produced via steam methane reforming (SMR), which forms the bulk of the currently produced H 2 . A possible solution is to incorporate an upgrading process of biomass feedstock that generates valuable chemicals into the solar water splitting device. This is expected to not only decrease the overall LCOH but also introduce an alternative renewable pathway in chemical manufacturing. In this study, we propose the concept of solar-driven hydrogenation of biomass-derived feedstock. Photoelectrochemically generated H 2 in our solar water splitting device is coupled in situ with the homogenously catalyzed hydrogenation of itaconic acid (IA) to methyl succinic acid (MSA). IA has been identified by the US Department of Energy as one of the twelve building blocks that possess the potential to be transformed subsequently into several high-value bio-based chemicals or materials. 4 MSA is a valuable chemical compound with an estimated global market size of up to ~15,000 tonnes, whose derivatives are ubiquitously used as solvents in cosmetics, 5 polymer synthesis, 6 binders in powder coatings, 7 and organic synthesis, especially for pharmaceutical synthesis. 8-9 Our coupled hydrogenation approach—performed in the PV-electrolyzer and PEC configurations using III-V PV cells and BiVO 4 -based photoelectrode, respectively—successfully demonstrate solar-driven H 2 -to-MSA conversion efficiencies as high as 60%. In comparison to the non-coupled approach (i.e., direct hydrogenation), our coupled system offers synergistic benefits in terms of prolonged durability and a higher degree of flexibility toward other important chemical transformation reactions. In addition, life-cycle net energy assessment and technoeconomic analysis results show that adding the coupled hydrogenation process significantly lowers the energy payback time and the LCOH, respectively, to a point that is competitive even with SMR-produced H 2 . Further implications and optimization potentials of the coupled PEC hydrogenation approach will be discussed. References Kim, J. H.; Hansora, D.; Sharma, P.; Jang, J.-W.; Lee, J. S., Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 2019, 48 (7), 1908-1971. Shaner, M. R.; Atwater, H. A.; Lewis, N. S.; McFarland, E. W., A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy Environ. Sci. 2016, 9 (7), 2354-2371. Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; Forman, A. J.; Chen, Z.; Deutsch, T. G.; James, B. D.; Baum, K. N.; Baum, G. N.; Ardo, S.; Wang, H.; Miller, E.; Jaramillo, T. F., Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 2013, 6 (7), 1983-2002. Werpy, T.; Petersen, G. Top value added chemicals from biomass: volume I--results of screening for potential candidates from sugars and synthesis gas ; National Renewable Energy Lab., Golden, CO (US): 2004. Richard, H.; Muller, B. Use of a 2-methylsuccinic acid diester derivative as solvent in cosmetic compositions; cosmetic compositions containing the same. WO2012119861A3, 2012. Verduyckt, J.; De Vos, D. Method for the production of methylsuccinic acid and the anhydride thereof from citric acid. WO2018065475A1, 2017. Mijolovic, D.; Szarka, Z. J.; Heimann, J.; Garnier, S. Powder coating useful as a coating agent, and for coating metallic- and non-metallic surfaces, comprises a binder comprising methyl succinic acid. DE102011080722A1, 2012. Okabe, M.; Lies, D.; Kanamasa, S.; Park, E. Y., Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl. Microbiol. Biotechnol. 2009, 84 (4), 597-606. Willke, T.; Vorlop, K.-D., Biotechnological production of itaconic acid. Appl. Microbiol. Biotechnol. 2001, 56 (3), 289-295.","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Meeting Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/ma2023-01372128mtgabs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Green H 2 has been recognized as an important element in efforts to decarbonize our fossil fuel-dependent society. One approach to produce green H 2 is solar water splitting in a photoelectrochemical (PEC) device. Solar-to-hydrogen (STH) efficiencies of up to 30% have been demonstrated 1 but studies have shown that this approach still results in a relatively high levelized cost of hydrogen (LCOH) of ~10 US$ per kg of H 2 . 2-3 This is ca. one order of magnitude higher than that of hydrogen produced via steam methane reforming (SMR), which forms the bulk of the currently produced H 2 . A possible solution is to incorporate an upgrading process of biomass feedstock that generates valuable chemicals into the solar water splitting device. This is expected to not only decrease the overall LCOH but also introduce an alternative renewable pathway in chemical manufacturing. In this study, we propose the concept of solar-driven hydrogenation of biomass-derived feedstock. Photoelectrochemically generated H 2 in our solar water splitting device is coupled in situ with the homogenously catalyzed hydrogenation of itaconic acid (IA) to methyl succinic acid (MSA). IA has been identified by the US Department of Energy as one of the twelve building blocks that possess the potential to be transformed subsequently into several high-value bio-based chemicals or materials. 4 MSA is a valuable chemical compound with an estimated global market size of up to ~15,000 tonnes, whose derivatives are ubiquitously used as solvents in cosmetics, 5 polymer synthesis, 6 binders in powder coatings, 7 and organic synthesis, especially for pharmaceutical synthesis. 8-9 Our coupled hydrogenation approach—performed in the PV-electrolyzer and PEC configurations using III-V PV cells and BiVO 4 -based photoelectrode, respectively—successfully demonstrate solar-driven H 2 -to-MSA conversion efficiencies as high as 60%. In comparison to the non-coupled approach (i.e., direct hydrogenation), our coupled system offers synergistic benefits in terms of prolonged durability and a higher degree of flexibility toward other important chemical transformation reactions. In addition, life-cycle net energy assessment and technoeconomic analysis results show that adding the coupled hydrogenation process significantly lowers the energy payback time and the LCOH, respectively, to a point that is competitive even with SMR-produced H 2 . Further implications and optimization potentials of the coupled PEC hydrogenation approach will be discussed. References Kim, J. H.; Hansora, D.; Sharma, P.; Jang, J.-W.; Lee, J. S., Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 2019, 48 (7), 1908-1971. Shaner, M. R.; Atwater, H. A.; Lewis, N. S.; McFarland, E. W., A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy Environ. Sci. 2016, 9 (7), 2354-2371. Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; Forman, A. J.; Chen, Z.; Deutsch, T. G.; James, B. D.; Baum, K. N.; Baum, G. N.; Ardo, S.; Wang, H.; Miller, E.; Jaramillo, T. F., Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 2013, 6 (7), 1983-2002. Werpy, T.; Petersen, G. Top value added chemicals from biomass: volume I--results of screening for potential candidates from sugars and synthesis gas ; National Renewable Energy Lab., Golden, CO (US): 2004. Richard, H.; Muller, B. Use of a 2-methylsuccinic acid diester derivative as solvent in cosmetic compositions; cosmetic compositions containing the same. WO2012119861A3, 2012. Verduyckt, J.; De Vos, D. Method for the production of methylsuccinic acid and the anhydride thereof from citric acid. WO2018065475A1, 2017. Mijolovic, D.; Szarka, Z. J.; Heimann, J.; Garnier, S. Powder coating useful as a coating agent, and for coating metallic- and non-metallic surfaces, comprises a binder comprising methyl succinic acid. DE102011080722A1, 2012. Okabe, M.; Lies, D.; Kanamasa, S.; Park, E. Y., Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl. Microbiol. Biotechnol. 2009, 84 (4), 597-606. Willke, T.; Vorlop, K.-D., Biotechnological production of itaconic acid. Appl. Microbiol. Biotechnol. 2001, 56 (3), 289-295.
利用原位光电化学生成的氢气偶联加氢,太阳能驱动生物质升级
绿色二氧化碳已被认为是使我们这个依赖化石燃料的社会脱碳的重要因素。一种生产绿色h2的方法是在光电化学(PEC)装置中进行太阳能水分解。太阳能制氢(STH)的效率高达30%,但研究表明,这种方法仍然导致相对较高的氢(LCOH)成本,每公斤h2约为10美元。2-3这比通过蒸汽甲烷重整(SMR)产生的氢高出大约一个数量级,后者构成了目前产生的大部分h2。一种可能的解决方案是将产生有价值化学物质的生物质原料的升级过程整合到太阳能水分解装置中。预计这不仅可以降低总体LCOH,还可以在化学制造中引入可再生的替代途径。在这项研究中,我们提出了太阳能驱动生物质原料加氢的概念。在我们的太阳能水分解装置中,光电化学生成的h2与衣康酸(IA)均匀催化加氢生成甲基琥珀酸(MSA)在原位耦合。IA已被美国能源部确定为12种具有转化为几种高价值生物基化学品或材料潜力的基石之一。MSA是一种有价值的化合物,估计全球市场规模高达15,000吨,其衍生物广泛用作化妆品溶剂,聚合物合成,粉末涂料粘合剂,有机合成,特别是药物合成。8-9我们的耦合加氢方法——分别使用III-V型光伏电池和基于BiVO 4的光电极在PV-电解槽和PEC配置中进行——成功地证明了太阳能驱动的h2到msa的转换效率高达60%。与非耦合方法(即直接加氢)相比,我们的耦合系统在延长耐久性和更高程度的灵活性方面提供了协同效益,适用于其他重要的化学转化反应。此外,生命周期净能量评估和技术经济分析结果表明,添加耦合加氢过程分别显著降低了能量回收期和LCOH,甚至可以与smr生产的h2相竞争。本文将进一步讨论耦合PEC加氢方法的意义和优化潜力。金,j.h.;Hansora d;沙玛,p;张成泽、J.-W;李,J. S,《走向实用的太阳能制氢——一种人工光合叶片到农场的挑战》。化学。Soc。Rev. 2019, 48(7), 1908-1971。沙纳,m.r.;阿特沃特,h.a.;刘易斯,n.s.;McFarland, E. W.,《利用太阳能生产可再生氢的比较技术经济分析》。能源环境。科学通报,2016,9(7),2354-2371。皮诺,文学学士;班克,j.d.;塞茨,l.c.;福尔曼,a.j.;陈,z;多伊奇,t.g.;詹姆斯,b.d.;鲍姆,k.n.;鲍姆,g.n.;Ardo,美国;王,h;米勒,大肠;Jaramillo, t.f.,通过光催化和光电化学的太阳能制氢集中设施的技术和经济可行性。能源环境。自然科学,2013,6(7),1983-2002。Werpy t;来自生物质的高附加值化学品:第一卷-从糖和合成气中筛选潜在候选物的结果;国家可再生能源实验室。戈登,CO .(美国):2004。理查德·h·;在化妆品成分中使用2-甲基琥珀酸二酯衍生物作为溶剂;化妆品成分含有相同的。WO2012119861A3, 2012年。Verduyckt, j .;用柠檬酸生产甲基琥珀酸及其酸酐的方法。WO2018065475A1, 2017年。Mijolovic d;Szarka, zj;这个j .;粉末涂料可用作涂覆剂,并用于涂覆金属和非金属表面,它包括一种含有甲基琥珀酸的粘合剂。DE102011080722A1, 2012年。冈,m;谎言,d;Kanamasa,美国;衣康酸的生物技术生产及其在地曲霉中的生物合成。达成。Microbiol。生物工程学报,2009,34(4),597-606。维奇,t;Vorlop K.-D。衣康酸的生物技术生产。达成。Microbiol。生物工程学报,2001,36(3),389 - 391。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信