{"title":"(Keynote) Electrochemical Proton-Coupled Electron Transfer Theory","authors":"Sharon Hammes-Schiffer","doi":"10.1149/ma2023-01452453mtgabs","DOIUrl":null,"url":null,"abstract":"Proton-coupled electron transfer (PCET) plays a vital role in a wide range of electrochemical processes. This talk will describe theoretical and computational methods that have been developed to study electrochemical PCET and a variety of applications to molecular and heterogeneous electrocatalysis. My group has formulated a general PCET theory that includes the quantum mechanical effects of the electrons and transferring protons, as well as the motions of the donor-acceptor modes and solvent or protein environment. This PCET theory enables the calculation of rate constants and kinetic isotope effects for comparison to experiment. Our extension of this theory to electrochemical PCET incorporates the electronic structure of the electrode and the interfacial electric fields arising from the electrical double layer. Theoretical formulations for both homogeneous and heterogeneous electrochemical PCET provide analytical expressions for the rate constants and current densities as functions of applied potential. This theory has been applied to proton discharge on metal electrodes, as well as PCET at metal oxides and graphite-conjugated catalysts. These applications highlight the importance of using a theory that quantizes the transferring proton and includes the effects of hydrogen tunneling and excited electron-proton vibronic states. The insights from these theoretical studies are useful for the design of electrocatalytic systems to control the movement and coupling of electrons and protons for energy conversion processes. References Venkataraman, A. V. Soudackov, and S. Hammes-Schiffer, Theoretical formulation of nonadiabatic electrochemical proton-coupled electron transfer at metal-solution interfaces, J. Phys. Chem. C 112 , 12386-12397 (2008). K. Goldsmith, Y. C. Lam, A V. Soudackov, and S. Hammes-Schiffer, Proton discharge on a gold electrode from triethylammonium in acetonitrile: Theoretical modeling of potential-dependent kinetic isotope effects, J. Am. Chem. Soc. 141 , 1084-1090 (2019). C. Lam, A. V. Soudackov, and S. Hammes-Schiffer, Kinetics of proton discharge on metal electrodes: Effects of vibrational nonadiabaticity and solvent dynamics, J. Phys. Chem. Lett. 10 , 5312-5217 (2019). E. Warburton, P. Hutchison, M. N. Jackson, M. L. Pegis, Y. Surendranath, and S. Hammes-Schiffer, “Interfacial field-driven proton-coupled electron transfer at graphite-conjugated organic acids,” J. Am. Chem. Soc. 142 , 20855-20864 (2020). E. Warburton, A. V. Soudackov, and S. Hammes-Schiffer, Theoretical modeling of electrochemical proton-coupled electron transfer, Chem. Rev. 122 , 10599-10650 (2022).","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Meeting Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/ma2023-01452453mtgabs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Proton-coupled electron transfer (PCET) plays a vital role in a wide range of electrochemical processes. This talk will describe theoretical and computational methods that have been developed to study electrochemical PCET and a variety of applications to molecular and heterogeneous electrocatalysis. My group has formulated a general PCET theory that includes the quantum mechanical effects of the electrons and transferring protons, as well as the motions of the donor-acceptor modes and solvent or protein environment. This PCET theory enables the calculation of rate constants and kinetic isotope effects for comparison to experiment. Our extension of this theory to electrochemical PCET incorporates the electronic structure of the electrode and the interfacial electric fields arising from the electrical double layer. Theoretical formulations for both homogeneous and heterogeneous electrochemical PCET provide analytical expressions for the rate constants and current densities as functions of applied potential. This theory has been applied to proton discharge on metal electrodes, as well as PCET at metal oxides and graphite-conjugated catalysts. These applications highlight the importance of using a theory that quantizes the transferring proton and includes the effects of hydrogen tunneling and excited electron-proton vibronic states. The insights from these theoretical studies are useful for the design of electrocatalytic systems to control the movement and coupling of electrons and protons for energy conversion processes. References Venkataraman, A. V. Soudackov, and S. Hammes-Schiffer, Theoretical formulation of nonadiabatic electrochemical proton-coupled electron transfer at metal-solution interfaces, J. Phys. Chem. C 112 , 12386-12397 (2008). K. Goldsmith, Y. C. Lam, A V. Soudackov, and S. Hammes-Schiffer, Proton discharge on a gold electrode from triethylammonium in acetonitrile: Theoretical modeling of potential-dependent kinetic isotope effects, J. Am. Chem. Soc. 141 , 1084-1090 (2019). C. Lam, A. V. Soudackov, and S. Hammes-Schiffer, Kinetics of proton discharge on metal electrodes: Effects of vibrational nonadiabaticity and solvent dynamics, J. Phys. Chem. Lett. 10 , 5312-5217 (2019). E. Warburton, P. Hutchison, M. N. Jackson, M. L. Pegis, Y. Surendranath, and S. Hammes-Schiffer, “Interfacial field-driven proton-coupled electron transfer at graphite-conjugated organic acids,” J. Am. Chem. Soc. 142 , 20855-20864 (2020). E. Warburton, A. V. Soudackov, and S. Hammes-Schiffer, Theoretical modeling of electrochemical proton-coupled electron transfer, Chem. Rev. 122 , 10599-10650 (2022).
质子耦合电子转移(PCET)在广泛的电化学过程中起着重要作用。本讲座将介绍用于研究电化学PCET的理论和计算方法,以及在分子和多相电催化中的各种应用。我的小组已经制定了一个通用的PCET理论,包括电子和转移质子的量子力学效应,以及供体-受体模式和溶剂或蛋白质环境的运动。这种PCET理论可以计算速率常数和动力学同位素效应,以便与实验进行比较。我们将这一理论扩展到电化学PCET,结合了电极的电子结构和双电层产生的界面电场。均相和非均相电化学PCET的理论公式提供了作为外加电位函数的速率常数和电流密度的解析表达式。该理论已应用于金属电极上的质子放电,以及金属氧化物和石墨共轭催化剂上的PCET。这些应用突出了使用一种理论的重要性,该理论将转移质子量子化,并包括氢隧穿和激发电子-质子振动态的影响。这些理论研究的见解有助于设计电催化系统来控制能量转换过程中电子和质子的运动和耦合。文卡塔曼,A. V. Soudackov, S. Hammes-Schiffer,金属-溶液界面非绝热电化学质子耦合电子转移的理论表述,物理学报。化学。[j] .科学通报,2008,(5):391 - 397。李建军,李建军,李建军,李建军,三乙基铵在金电极上的质子放电:电位依赖的动力学同位素效应的理论建模,J. m。化学。社会科学学报,41,1084-1090(2019)。林志强,李建军,金属电极上质子放电动力学:振动非绝热性和溶剂动力学的影响,物理学报。化学。Lett. 10, 5312-5217(2019)。E. Warburton, P. Hutchison, M. N. Jackson, M. L. Pegis, Y. Surendranath和S. Hammes-Schiffer,“石墨共轭有机酸的界面场驱动质子耦合电子转移”,J. Am。化学。社会科学学报,20855-20864(2020)。李志强,李志强,电化学中质子耦合电子转移的理论模拟,化学学报。中国生物医学工程学报,2012,32(2)。