Investigation of the Performance and Durability of Reactive Spray Deposition Fabricated Electrodes on a Bifunctional Membrane for Alkaline Water Electrolysis and CO2 Reduction Reaction

Alanna M. Gado, Deniz Ipekçi, Stoyan Bliznakov, Leonard J. Bonville, Jeffrey McCutcheon, Radenka Maric
{"title":"Investigation of the Performance and Durability of Reactive Spray Deposition Fabricated Electrodes on a Bifunctional Membrane for Alkaline Water Electrolysis and CO<sub>2</sub> Reduction Reaction","authors":"Alanna M. Gado, Deniz Ipekçi, Stoyan Bliznakov, Leonard J. Bonville, Jeffrey McCutcheon, Radenka Maric","doi":"10.1149/ma2023-01382250mtgabs","DOIUrl":null,"url":null,"abstract":"Alkaline water electrolysis (AWE) is a promising technology for carbon capture [1]. Anion exchange membrane water electrolyzers (AEMWEs) utilize low-cost, non-precious metal materials, providing an economically viable alternative to more expensive proton exchange membrane water electrolyzers (PEMWEs). While PEMWEs can operate at much higher current densities, they require noble metal catalysts and titanium components for the high potential environment anode [1]. The implementation of a bipolar membrane (BPM) will allow both HER and OER to occur under kinetically favorable conditions [2, 3] by combining both thin AEM and thin PEM layers within a single membrane. AEMs, PEMs, and BPMs have been tested in CO2RR electrolyzers [4]. The BPM may provide a pathway to combine the advantages of both AEMs and PEMs for CO 2 reduction. Altering both the membrane and CCM is a focus in the research and development in CO 2 RR electrolyzers. Lee et al. [5] explored the use of a porous membrane for CO2 reduction. While work can be done to improve performance and crossover, the porous membrane provided excellent mechanical properties and good economic potential. There has been some work done on developing bifunctional membranes for water electrolysis and CO 2 reduction [3, 6, 7]. Two key issues with operation of a CO 2 RR electrolyzer with a BPM is the reactant CO 2 that is lost to the AEM and PEM membrane layer interface and the instability of the cell. Both issues contribute to a significant decrease in performance and faradaic efficiency in product conversion. Development of the BPM, both on the membrane’s fabrication and configuration, and electrode layers, needs to be explored to reach higher performances and longer lifespans. In this work, reactive spray deposition technology (RSDT) was used to fabricate electrodes on a UConn fabricated bipolar membrane. Testing of each configuration was conducted as both an AEM water electrolyzer and CO 2 RR electrolyzer. Polarization, electrochemical impedance spectroscopy, electrochemical equivalent circuits, and distribution of relaxation times were used to investigate cell performance and durability. References [1] B. Mayerhofer, D. McLaughlin, T. Bohm, M. Hegelheimer, D. Seeberger, and S. Thiele, “Bipolar membrane electrode assemblies for water electrolysis,” ACS applied energy materials, vol. 3, no. 10, pp. 9635–9644, 2020. [2] J. Xu, I. Amorim, Y. Li, J. Li, Z. Yu, B. Zhang, A. Araujo, N. Zhang, and L. Liu, “Stable overall water splitting in an asymmetric acid/alkaline electrolyzer comprising a bipolar membrane sandwiched by bifunctional cobalt-nickel phosphide nanowire electrodes,” Carbon Energy, vol. 2, no. 4, pp. 646–655, 2020. [3] Q. Lei, B. Wang, P. Wang, and S. Liu, “Hydrogen generation with acid/alkaline amphoteric water electrolysis,” Journal of Energy Chemistry, vol. 38, pp. 162–169, 2019. [13] W. H. Lee, K. Kim, C. Lim, Y. J. Ko, Y. J. Hwang, B. K. Min, U. Lee, and H. S. Oh, “New strategies for economically feasible CO 2 electroreduction using a porous membrane in zero-gap configuration,” Journal of Materials Chemistry A, vol. 9, pp. 16169–16177, 8 2021 [4] D. A. Salvatore, C. M. Gabardo, A. Reyes, C. P. O’Brien, S. Holdcroft, P. Pintauro, B. Bahar, M. Hickner, C. Bae, D. Sinton, E. H. Sargent, and C. P. Berlinguette, “Designing anion exchange membranes forCO 2 electrolysers,” Nature Energy, vol. 6, pp. 339–348, 4 202 [5] W. H. Lee, K. Kim, C. Lim, Y. J. Ko, Y. J. Hwang, B. K. Min, U. Lee, and H. S. Oh, “New strategies for economically feasible CO 2 electroreduction using a porous membrane in zero-gap configuration,” Journal of Materials Chemistry A, vol. 9, pp. 16169–16177, 8 2021 [6] W. Li, Z. Yin, Z. Gao, G. Wang, Z. Li, F. Wei, X. Wei, H. Peng, X. Hu, L. Xiao, J. Lu, and L. Zhuang, “Bifunctional ionomers for efficient CO electrolysis of CO 2 and pure water towards ethylene production at industrialscale current densities,” Nature Energy, 2022 [7] C. P. O’Brien, R. K. Miao, S. Liu, Y. Xu, G. Lee, A. Robb, J. E. Huang, K. Xie, K. Bertens, C. M. Gabardo, et al., “Single pass CO 2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO 2 regeneration,” ACS Energy Letters, vol. 6, no. 8, pp. 2952–2959, 2021.","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Meeting Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/ma2023-01382250mtgabs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Alkaline water electrolysis (AWE) is a promising technology for carbon capture [1]. Anion exchange membrane water electrolyzers (AEMWEs) utilize low-cost, non-precious metal materials, providing an economically viable alternative to more expensive proton exchange membrane water electrolyzers (PEMWEs). While PEMWEs can operate at much higher current densities, they require noble metal catalysts and titanium components for the high potential environment anode [1]. The implementation of a bipolar membrane (BPM) will allow both HER and OER to occur under kinetically favorable conditions [2, 3] by combining both thin AEM and thin PEM layers within a single membrane. AEMs, PEMs, and BPMs have been tested in CO2RR electrolyzers [4]. The BPM may provide a pathway to combine the advantages of both AEMs and PEMs for CO 2 reduction. Altering both the membrane and CCM is a focus in the research and development in CO 2 RR electrolyzers. Lee et al. [5] explored the use of a porous membrane for CO2 reduction. While work can be done to improve performance and crossover, the porous membrane provided excellent mechanical properties and good economic potential. There has been some work done on developing bifunctional membranes for water electrolysis and CO 2 reduction [3, 6, 7]. Two key issues with operation of a CO 2 RR electrolyzer with a BPM is the reactant CO 2 that is lost to the AEM and PEM membrane layer interface and the instability of the cell. Both issues contribute to a significant decrease in performance and faradaic efficiency in product conversion. Development of the BPM, both on the membrane’s fabrication and configuration, and electrode layers, needs to be explored to reach higher performances and longer lifespans. In this work, reactive spray deposition technology (RSDT) was used to fabricate electrodes on a UConn fabricated bipolar membrane. Testing of each configuration was conducted as both an AEM water electrolyzer and CO 2 RR electrolyzer. Polarization, electrochemical impedance spectroscopy, electrochemical equivalent circuits, and distribution of relaxation times were used to investigate cell performance and durability. References [1] B. Mayerhofer, D. McLaughlin, T. Bohm, M. Hegelheimer, D. Seeberger, and S. Thiele, “Bipolar membrane electrode assemblies for water electrolysis,” ACS applied energy materials, vol. 3, no. 10, pp. 9635–9644, 2020. [2] J. Xu, I. Amorim, Y. Li, J. Li, Z. Yu, B. Zhang, A. Araujo, N. Zhang, and L. Liu, “Stable overall water splitting in an asymmetric acid/alkaline electrolyzer comprising a bipolar membrane sandwiched by bifunctional cobalt-nickel phosphide nanowire electrodes,” Carbon Energy, vol. 2, no. 4, pp. 646–655, 2020. [3] Q. Lei, B. Wang, P. Wang, and S. Liu, “Hydrogen generation with acid/alkaline amphoteric water electrolysis,” Journal of Energy Chemistry, vol. 38, pp. 162–169, 2019. [13] W. H. Lee, K. Kim, C. Lim, Y. J. Ko, Y. J. Hwang, B. K. Min, U. Lee, and H. S. Oh, “New strategies for economically feasible CO 2 electroreduction using a porous membrane in zero-gap configuration,” Journal of Materials Chemistry A, vol. 9, pp. 16169–16177, 8 2021 [4] D. A. Salvatore, C. M. Gabardo, A. Reyes, C. P. O’Brien, S. Holdcroft, P. Pintauro, B. Bahar, M. Hickner, C. Bae, D. Sinton, E. H. Sargent, and C. P. Berlinguette, “Designing anion exchange membranes forCO 2 electrolysers,” Nature Energy, vol. 6, pp. 339–348, 4 202 [5] W. H. Lee, K. Kim, C. Lim, Y. J. Ko, Y. J. Hwang, B. K. Min, U. Lee, and H. S. Oh, “New strategies for economically feasible CO 2 electroreduction using a porous membrane in zero-gap configuration,” Journal of Materials Chemistry A, vol. 9, pp. 16169–16177, 8 2021 [6] W. Li, Z. Yin, Z. Gao, G. Wang, Z. Li, F. Wei, X. Wei, H. Peng, X. Hu, L. Xiao, J. Lu, and L. Zhuang, “Bifunctional ionomers for efficient CO electrolysis of CO 2 and pure water towards ethylene production at industrialscale current densities,” Nature Energy, 2022 [7] C. P. O’Brien, R. K. Miao, S. Liu, Y. Xu, G. Lee, A. Robb, J. E. Huang, K. Xie, K. Bertens, C. M. Gabardo, et al., “Single pass CO 2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO 2 regeneration,” ACS Energy Letters, vol. 6, no. 8, pp. 2952–2959, 2021.
双功能膜上反应性喷雾沉积电极的性能和耐久性研究
碱性电解(AWE)是一种很有前途的碳捕获技术[1]。阴离子交换膜水电解槽(AEMWEs)利用低成本的非贵金属材料,为更昂贵的质子交换膜水电解槽(PEMWEs)提供了一种经济可行的替代方案。虽然PEMWEs可以在更高的电流密度下工作,但它们需要贵金属催化剂和钛组件来作为高电位环境阳极[1]。双极膜(BPM)的实现将允许HER和OER在动力学有利的条件下发生[2,3],通过在单个膜内结合薄AEM和薄PEM层。已经在CO2RR电解槽中对AEMs、pem和bpm进行了测试[4]。BPM可以提供一条途径,将AEMs和PEMs的优势结合起来减少二氧化碳。改变膜和CCM是co2 RR电解槽研究和发展的重点。Lee等人[5]探索了使用多孔膜进行CO2还原。虽然还需要改进性能和交叉,但多孔膜具有优异的机械性能和良好的经济潜力。在开发用于水电解和CO 2还原的双功能膜方面已经做了一些工作[3,6,7]。使用BPM的CO 2 RR电解槽运行的两个关键问题是反应物CO 2损失到AEM和PEM膜层界面以及电解槽的不稳定性。这两个问题都导致产品转换的性能和效率显著下降。BPM的发展,无论是在膜的制造和配置,还是电极层,都需要探索以达到更高的性能和更长的寿命。在这项工作中,使用反应喷涂沉积技术(RSDT)在UConn制造的双极膜上制备电极。分别作为AEM水电解槽和co2 RR电解槽对每种配置进行了测试。利用极化、电化学阻抗谱、电化学等效电路和弛豫时间分布来研究电池的性能和耐久性。[1]刘建军,刘建军,刘建军,“水电解膜电极的研究进展”,能源工程学报,vol. 3, no. 1。10, pp. 9635-9644, 2020。[2]徐建军,李勇,李军,于忠,张斌,张伯杰,张宁,刘磊,“双功能磷化钴-镍纳米线电极在非对称酸/碱性电解槽中的稳定整体水分解,”碳能,第2卷,第2期。4, pp. 646-655, 2020。[3]雷强,王斌,王平,刘顺生,“酸碱两性电解制氢”,能源化学,vol. 38, pp. 162-169, 2019。[13] w·h·李,k金,c . Lim y . j . Ko y . j .黄b . k . Min Lee,和h . s .哦,”新战略在经济上可行的CO 2电解还原使用多孔膜在零距离配置中,“材料化学杂志》9卷,第16177 - 16169页,2021年8 [4]d·a·塞尔瓦托c . m . Gabardo雷耶斯,c·p·奥布莱恩s Holdcroft p . Pintauro b . Bahar m . Hickner c . Bae d·辛顿e·h·萨金特和c·p·Berlinguette“阴离子交换膜forCO 2电解槽设计”[5]李文辉,金锴,高英杰,黄艳娟,闵宝康,李玉,吴海生,“零间隙结构多孔膜电还原CO 2的新方法”,环境科学,vol. 6, pp. 339-348, 4202[6]李伟,殷志刚,王国光,李忠,魏峰,魏晓霞,彭慧,胡晓玲,肖丽,卢建军,庄磊,“高电流密度下高效CO电解co2和纯水制备乙烯的双功能离子单体,”材料化学学报,vol. 9, pp. 16169-16177, 2021[7]刘树明,刘树明,刘永强,刘志强,刘志强,李国光,黄建明,谢克明,刘志强,等,“电合成多碳产品的CO 2再生效率超过85%,”能源工程学报,第6卷,第7期。8, pp. 2952-2959, 2021。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信