{"title":"Fast reaction limit of reaction diffusion systems with nonlinear diffusion","authors":"Elaine Crooks, Yini Du","doi":"10.1142/s0219199723500426","DOIUrl":null,"url":null,"abstract":"In this paper, we present an approach to characterizing fast-reaction limits of systems with nonlinear diffusion, when there are either two reaction–diffusion equations, or one reaction–diffusion equation and one ordinary differential equation, on unbounded domains. Here, we replace the terms of the form [Formula: see text] in usual reaction–diffusion equation, which represent linear diffusion, by terms of form [Formula: see text], representing nonlinear diffusion. We prove the convergence in the fast-reaction limit [Formula: see text] that is determined by the unique solution of a certain scalar nonlinear diffusion problem.","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"74 9","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219199723500426","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we present an approach to characterizing fast-reaction limits of systems with nonlinear diffusion, when there are either two reaction–diffusion equations, or one reaction–diffusion equation and one ordinary differential equation, on unbounded domains. Here, we replace the terms of the form [Formula: see text] in usual reaction–diffusion equation, which represent linear diffusion, by terms of form [Formula: see text], representing nonlinear diffusion. We prove the convergence in the fast-reaction limit [Formula: see text] that is determined by the unique solution of a certain scalar nonlinear diffusion problem.
期刊介绍:
With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.