Quantum Eigenvector Continuation for Chemistry Applications

IF 2.9 Q3 CHEMISTRY, PHYSICAL
Carlos Mejuto-Zaera, Alexander F Kemper
{"title":"Quantum Eigenvector Continuation for Chemistry Applications","authors":"Carlos Mejuto-Zaera, Alexander F Kemper","doi":"10.1088/2516-1075/ad018f","DOIUrl":null,"url":null,"abstract":"Abstract A typical task for classical and quantum computing in chemistry is finding a potential energy surface (PES) along a reaction coordinate, which involves solving the quantum chemistry problem for many points along the reaction path. Developing algorithms to accomplish this task on quantum computers has been an active area of development, yet finding all the relevant eigenstates along the reaction coordinate remains a difficult problem, and determining PESs is thus a costly proposal. In this paper, we demonstrate the use of a eigenvector continuation—a subspace expansion that uses a few eigenstates as a basis—as a tool for rapidly exploring PESs. We apply this to determining the binding PES or torsion PES for several molecules of varying complexity. In all cases, we show that the PES can be captured using relatively few basis states; suggesting that a significant amount of (quantum) computational effort can be saved by making use of already calculated ground states in this manner.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":"75 13","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/ad018f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract A typical task for classical and quantum computing in chemistry is finding a potential energy surface (PES) along a reaction coordinate, which involves solving the quantum chemistry problem for many points along the reaction path. Developing algorithms to accomplish this task on quantum computers has been an active area of development, yet finding all the relevant eigenstates along the reaction coordinate remains a difficult problem, and determining PESs is thus a costly proposal. In this paper, we demonstrate the use of a eigenvector continuation—a subspace expansion that uses a few eigenstates as a basis—as a tool for rapidly exploring PESs. We apply this to determining the binding PES or torsion PES for several molecules of varying complexity. In all cases, we show that the PES can be captured using relatively few basis states; suggesting that a significant amount of (quantum) computational effort can be saved by making use of already calculated ground states in this manner.
化学应用中的量子特征向量延拓
化学中经典计算和量子计算的一个典型任务是沿反应坐标寻找势能面,这涉及到沿反应路径求解多个点的量子化学问题。在量子计算机上开发完成这项任务的算法一直是一个活跃的发展领域,但是找到沿反应坐标的所有相关特征态仍然是一个难题,因此确定PESs是一个昂贵的建议。在本文中,我们演示了使用特征向量延拓-一种使用几个特征态作为基础的子空间展开-作为快速探索PESs的工具。我们将此应用于确定不同复杂性的几个分子的结合PES或扭转PES。在所有情况下,我们都表明可以使用相对较少的基状态捕获PES;这表明,通过以这种方式利用已经计算出的基态,可以节省大量的(量子)计算工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
11.50%
发文量
46
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信