Some remarks on simplified double porosity model of immiscible incompressible two-phase flow

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
M. Jurak, L. Pankratov, A. Vrbaški
{"title":"Some remarks on simplified double porosity model of immiscible incompressible two-phase flow","authors":"M. Jurak, L. Pankratov, A. Vrbaški","doi":"10.3233/asy-231866","DOIUrl":null,"url":null,"abstract":"The paper is devoted to the derivation, by linearization, of simplified homogenized models of an immiscible incompressible two-phase flow in double porosity media in the case of thin fissures. In a simplified double porosity model derived previously by the authors the matrix-fracture source term is approximated by a convolution type source term. This approach enables to exclude the cell problem, in form of the imbibition equation, from the global double porosity model. In this paper we propose a new linear version of the imbibition equation which leads to a new simplified double porosity model. We also present numerical simulations which show that the matrix-fracture exchange term based on this new linearization procedure gives a better approximation of the exact one than the corresponding exchange term obtained earlier by the authors.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/asy-231866","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The paper is devoted to the derivation, by linearization, of simplified homogenized models of an immiscible incompressible two-phase flow in double porosity media in the case of thin fissures. In a simplified double porosity model derived previously by the authors the matrix-fracture source term is approximated by a convolution type source term. This approach enables to exclude the cell problem, in form of the imbibition equation, from the global double porosity model. In this paper we propose a new linear version of the imbibition equation which leads to a new simplified double porosity model. We also present numerical simulations which show that the matrix-fracture exchange term based on this new linearization procedure gives a better approximation of the exact one than the corresponding exchange term obtained earlier by the authors.
非混相不可压缩两相流简化双孔隙率模型的几点思考
本文用线性化方法推导了薄裂隙双孔隙介质中不可混溶不可压缩两相流的简化均匀化模型。在作者先前推导的简化双重孔隙模型中,基质-裂缝源项近似为卷积型源项。这种方法可以从全局双重孔隙率模型中排除吸胀方程形式的细胞问题。本文提出了一种新的线性吸胀方程,从而得到了一种新的简化的双重孔隙率模型。数值模拟结果表明,基于这种新的线性化方法得到的矩阵-断裂交换项比作者先前得到的相应交换项更接近准确值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信