Coagulation equations with source leading to anomalousself-similarity

Marina A Ferreira, Eugenia Franco, Jani Lukkarinen, Alessia Nota, Juan J L Velazquez
{"title":"Coagulation equations with source leading to anomalousself-similarity","authors":"Marina A Ferreira, Eugenia Franco, Jani Lukkarinen, Alessia Nota, Juan J L Velazquez","doi":"10.1088/1751-8121/ad0822","DOIUrl":null,"url":null,"abstract":"Abstract We study the long-time behaviour of the solutions to Smoluchowski coagulation equations with a source term of small clusters. The source drives the system out-of-equilibrium, leading to a rich range of different possible long-time behaviours, including anomalous self-similarity. The coagulation kernel is non-gelling, homogeneous, with homogeneity <?CDATA $\\gamma \\unicode{x2A7D} -1 $?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>γ</mml:mi> <mml:mtext>⩽</mml:mtext> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:math> , and behaves like <?CDATA $x^{\\gamma+\\lambda} y^{-\\lambda} $?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msup> <mml:mi>x</mml:mi> <mml:mrow> <mml:mi>γ</mml:mi> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> </mml:mrow> </mml:msup> <mml:msup> <mml:mi>y</mml:mi> <mml:mrow> <mml:mo>−</mml:mo> <mml:mi>λ</mml:mi> </mml:mrow> </mml:msup> </mml:math> when <?CDATA $y \\ll x$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>y</mml:mi> <mml:mo>≪</mml:mo> <mml:mi>x</mml:mi> </mml:math> with <?CDATA $\\gamma+2\\lambda \\gt 1$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>γ</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>λ</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:math> . Our analysis shows that the long-time behaviour of the solutions depends on the parameters γ and λ . More precisely, we argue that the long-time behaviour is self-similar, although the scaling of the self-similar solutions depends on the sign of <?CDATA $\\gamma+\\lambda$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>γ</mml:mi> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> </mml:math> and on whether <?CDATA $\\gamma = -1$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>γ</mml:mi> <mml:mo>=</mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:math> or <?CDATA $\\gamma \\lt -1$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>γ</mml:mi> <mml:mo><</mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:math> . In all these cases, the scaling differs from the usual one that has been previously obtained when <?CDATA $\\gamma+2\\lambda \\lt 1$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>γ</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>λ</mml:mi> <mml:mo><</mml:mo> <mml:mn>1</mml:mn> </mml:math> or <?CDATA $\\gamma+2\\lambda \\unicode{x2A7E} 1, \\gamma \\gt -1$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>γ</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>λ</mml:mi> <mml:mtext>⩾</mml:mtext> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>γ</mml:mi> <mml:mo>></mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:math> . In the last part of the paper, we present some conjectures supporting the self-similar ansatz also for the critical case <?CDATA $\\gamma+2\\lambda = 1, \\gamma \\unicode{x2A7D} -1 $?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>γ</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>λ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>γ</mml:mi> <mml:mtext>⩽</mml:mtext> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:math> .","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"69 20","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad0822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We study the long-time behaviour of the solutions to Smoluchowski coagulation equations with a source term of small clusters. The source drives the system out-of-equilibrium, leading to a rich range of different possible long-time behaviours, including anomalous self-similarity. The coagulation kernel is non-gelling, homogeneous, with homogeneity γ 1 , and behaves like x γ + λ y λ when y x with γ + 2 λ > 1 . Our analysis shows that the long-time behaviour of the solutions depends on the parameters γ and λ . More precisely, we argue that the long-time behaviour is self-similar, although the scaling of the self-similar solutions depends on the sign of γ + λ and on whether γ = 1 or γ < 1 . In all these cases, the scaling differs from the usual one that has been previously obtained when γ + 2 λ < 1 or γ + 2 λ 1 , γ > 1 . In the last part of the paper, we present some conjectures supporting the self-similar ansatz also for the critical case γ + 2 λ = 1 , γ 1 .
具有异常自相似源的混凝方程
摘要研究了一类具有小簇源项的Smoluchowski凝聚方程解的长时间行为。源驱动系统失去平衡,导致一系列不同的可能的长期行为,包括异常的自相似性。混凝核是非胶凝的、均匀的,具有γ≥- 1的均匀性,当y≪x with γ + 2 λ >时表现为x γ + λ y−λ;1。我们的分析表明,解的长期行为取决于参数γ和λ。更准确地说,我们认为长期行为是自相似的,尽管自相似解的缩放取决于γ + λ的符号和γ = - 1或γ <−1。在所有这些情况下,标度不同于通常的标度,当γ + 2 λ <1或γ + 2 λ或1,γ >−1。在论文的最后一部分,我们给出了一些关于临界情况γ + 2 λ = 1, γ≤−1的自相似猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信