Morse Functions and Real Lagrangian Thimbles on Adjoint Orbits

IF 0.5 3区 数学 Q3 MATHEMATICS
Elizabeth Gasparim, Luiz A. B. San Martin
{"title":"Morse Functions and Real Lagrangian Thimbles on Adjoint Orbits","authors":"Elizabeth Gasparim, Luiz A. B. San Martin","doi":"10.1142/s1793525323500395","DOIUrl":null,"url":null,"abstract":"We compare Lagrangian thimbles for the potential of a Landau-Ginzburg model to the Morse theory of its real part. We explore Landau-Ginzburg models defined using Lie theory, constructing their real Lagrangian thimbles explicitly and comparing them to the stable and unstable manifolds of the real gradient flow.","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793525323500395","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We compare Lagrangian thimbles for the potential of a Landau-Ginzburg model to the Morse theory of its real part. We explore Landau-Ginzburg models defined using Lie theory, constructing their real Lagrangian thimbles explicitly and comparing them to the stable and unstable manifolds of the real gradient flow.
伴随轨道上的莫尔斯函数和实拉格朗日顶针
我们比较了朗道-金兹堡模型势能的拉格朗日顶针和其实部的莫尔斯理论。我们研究了用李理论定义的朗道-金兹堡模型,明确地构造了它们的真实拉格朗日顶针,并将它们与真实梯度流的稳定流形和不稳定流形进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信