Controllability of a fluid-structure interaction system coupling the Navier–Stokes system and a damped beam equation

IF 0.8 4区 数学 Q2 MATHEMATICS
Rémi Buffe, Takéo Takahashi
{"title":"Controllability of a fluid-structure interaction system coupling the Navier–Stokes system and a damped beam equation","authors":"Rémi Buffe, Takéo Takahashi","doi":"10.5802/crmath.509","DOIUrl":null,"url":null,"abstract":"We show the local null-controllability of a fluid-structure interaction system coupling a viscous incompressible fluid with a damped beam located on a part of its boundary. The controls act on arbitrary small parts of the fluid domain and of the beam domain. In order to show the result, we first use a change of variables and a linearization to reduce the problem to the null-controllability of a Stokes-beam system in a cylindrical domain. We obtain this property by combining Carleman inequalities for the heat equation, for the damped beam equation and for the Laplace equation with high-frequency estimates. Then, the result on the nonlinear system is obtained by a fixed-point argument.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"83 16","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.509","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show the local null-controllability of a fluid-structure interaction system coupling a viscous incompressible fluid with a damped beam located on a part of its boundary. The controls act on arbitrary small parts of the fluid domain and of the beam domain. In order to show the result, we first use a change of variables and a linearization to reduce the problem to the null-controllability of a Stokes-beam system in a cylindrical domain. We obtain this property by combining Carleman inequalities for the heat equation, for the damped beam equation and for the Laplace equation with high-frequency estimates. Then, the result on the nonlinear system is obtained by a fixed-point argument.
耦合Navier-Stokes系统和阻尼梁方程的流固耦合系统的可控性
我们展示了粘不可压缩流体与位于其部分边界上的阻尼梁耦合的流固相互作用系统的局部零可控性。控制作用于流体域和光束域的任意小部分。为了显示结果,我们首先使用变量变换和线性化方法将问题简化为圆柱形域Stokes-beam系统的零可控性。我们通过结合热方程的Carleman不等式,阻尼梁方程的Carleman不等式和拉普拉斯方程的高频估计得到了这个性质。然后,利用不动点参数对非线性系统进行求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
115
审稿时长
16.6 weeks
期刊介绍: The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English. The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信