A stability estimate for data assimilation subject to the heat equation with initial datum

IF 0.8 4区 数学 Q2 MATHEMATICS
Erik Burman, Guillaume Delay, Alexandre Ern, Lauri Oksanen
{"title":"A stability estimate for data assimilation subject to the heat equation with initial datum","authors":"Erik Burman, Guillaume Delay, Alexandre Ern, Lauri Oksanen","doi":"10.5802/crmath.506","DOIUrl":null,"url":null,"abstract":"This paper studies the unique continuation problem for the heat equation. We prove a so-called conditional stability estimate for the solution. We are interested in local estimates that are Hölder stable with the weakest possible norms of data on the right-hand side. Such an estimate is useful for the convergence analysis of computational methods dealing with data assimilation. We focus on the case of a known solution at initial time and in some subdomain but that is unknown on the boundary. To the best of our knowledge, this situation has not yet been studied in the literature.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"83 18","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.506","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the unique continuation problem for the heat equation. We prove a so-called conditional stability estimate for the solution. We are interested in local estimates that are Hölder stable with the weakest possible norms of data on the right-hand side. Such an estimate is useful for the convergence analysis of computational methods dealing with data assimilation. We focus on the case of a known solution at initial time and in some subdomain but that is unknown on the boundary. To the best of our knowledge, this situation has not yet been studied in the literature.
具有初始基准的热方程下资料同化的稳定性估计
本文研究了热方程的唯一延拓问题。我们证明了解的条件稳定性估计。我们感兴趣的是Hölder稳定的局部估计,右边的数据可能是最弱的规范。这种估计对处理数据同化的计算方法的收敛性分析是有用的。我们主要讨论在初始时间和某一子域上解已知,但在边界上解未知的情况。据我们所知,这种情况还没有在文献中研究过。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
115
审稿时长
16.6 weeks
期刊介绍: The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English. The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信