Equidistribution of rational subspaces and their shapes

Pub Date : 2023-11-10 DOI:10.1017/etds.2023.107
Menny Aka, Andrea Musso, Andreas Wieser
{"title":"Equidistribution of rational subspaces and their shapes","authors":"Menny Aka, Andrea Musso, Andreas Wieser","doi":"10.1017/etds.2023.107","DOIUrl":null,"url":null,"abstract":"Abstract To any k -dimensional subspace of $\\mathbb {Q}^n$ one can naturally associate a point in the Grassmannian $\\mathrm {Gr}_{n,k}(\\mathbb {R})$ and two shapes of lattices of rank k and $n-k$ , respectively. These lattices originate by intersecting the k -dimensional subspace and its orthogonal with the lattice $\\mathbb {Z}^n$ . Using unipotent dynamics, we prove simultaneous equidistribution of all of these objects under congruence conditions when $(k,n) \\neq (2,4)$ .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/etds.2023.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract To any k -dimensional subspace of $\mathbb {Q}^n$ one can naturally associate a point in the Grassmannian $\mathrm {Gr}_{n,k}(\mathbb {R})$ and two shapes of lattices of rank k and $n-k$ , respectively. These lattices originate by intersecting the k -dimensional subspace and its orthogonal with the lattice $\mathbb {Z}^n$ . Using unipotent dynamics, we prove simultaneous equidistribution of all of these objects under congruence conditions when $(k,n) \neq (2,4)$ .
分享
查看原文
有理子空间的等分布及其形状
摘要对于$\mathbb {Q}^n$的任意k维子空间,可以很自然地将Grassmannian $\ mathm {Gr}_{n,k}(\mathbb {R})$中的一个点与秩为k和秩为n-k$的两个格形联系起来。这些格是由k维子空间与晶格$\mathbb {Z}^n$的正交产生的。利用单幂动力学证明了在$(k,n) \neq(2,4)$的同余条件下,所有这些对象的同时均分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信