{"title":"Analysis of transmission dynamics of SARS-CoV-2 under seasonal change","authors":"Jian Wang, Wenjing Jiang, Mengdie Yang, Wei Shao","doi":"10.1142/s0218348x2350113x","DOIUrl":null,"url":null,"abstract":"In this paper, we explore whether the activity of SARS-CoV-2 was associated with seasonality. MF-DFA model is utilized to calculate multifractal strength and multifractal complexity to evaluate the change state of SARS-CoV-2 activity. We select 10 countries with serious epidemic in the world, which are distributed in different latitudes of the northern and southern hemispheres. The study utilized the time series data of daily new cases and daily new deaths recorded in these countries. We regard May to October as the “high temperature season” for countries in the northern hemisphere, November to April as the “low temperature season”, and the southern hemisphere is just the opposite. By comparing the multifractal intensity [Formula: see text] and multifractal complexity [Formula: see text] of the two time series in the two seasons, we draw a conclusion that, for both the sequence of the daily newly diagnosed persons and the daily newly increased number of deaths, in the countries of both the northern and southern hemispheres, [Formula: see text] and [Formula: see text] are weaker in the “low temperature season”. That is, in the low temperature environment, SARS-CoV-2 can survive for a long time and be more infectious. In addition, we also observe that in the northern hemisphere, Iran is at a lower latitude, and although the SARS-CoV-2 activity in the low temperature season is higher than that in the high temperature season, the difference is not significant. Therefore, the lower latitude may resist this phenomenon. However, most of the countries in the southern hemisphere are within 30[Formula: see text] of south latitude, with low latitude, and other meteorological characteristics such as humidity in the countries in the southern hemisphere are also relatively unique. Although SARS-CoV-2 is characterized by high activity in low temperature seasons, no direct evidence related to the characteristics of latitude distribution has been found.","PeriodicalId":55144,"journal":{"name":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","volume":"78 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x2350113x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we explore whether the activity of SARS-CoV-2 was associated with seasonality. MF-DFA model is utilized to calculate multifractal strength and multifractal complexity to evaluate the change state of SARS-CoV-2 activity. We select 10 countries with serious epidemic in the world, which are distributed in different latitudes of the northern and southern hemispheres. The study utilized the time series data of daily new cases and daily new deaths recorded in these countries. We regard May to October as the “high temperature season” for countries in the northern hemisphere, November to April as the “low temperature season”, and the southern hemisphere is just the opposite. By comparing the multifractal intensity [Formula: see text] and multifractal complexity [Formula: see text] of the two time series in the two seasons, we draw a conclusion that, for both the sequence of the daily newly diagnosed persons and the daily newly increased number of deaths, in the countries of both the northern and southern hemispheres, [Formula: see text] and [Formula: see text] are weaker in the “low temperature season”. That is, in the low temperature environment, SARS-CoV-2 can survive for a long time and be more infectious. In addition, we also observe that in the northern hemisphere, Iran is at a lower latitude, and although the SARS-CoV-2 activity in the low temperature season is higher than that in the high temperature season, the difference is not significant. Therefore, the lower latitude may resist this phenomenon. However, most of the countries in the southern hemisphere are within 30[Formula: see text] of south latitude, with low latitude, and other meteorological characteristics such as humidity in the countries in the southern hemisphere are also relatively unique. Although SARS-CoV-2 is characterized by high activity in low temperature seasons, no direct evidence related to the characteristics of latitude distribution has been found.
期刊介绍:
The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.
Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.
The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.