Hong Gao, Yunlei Zhang, Yuqi Wang, Yuanyuan Guo, Xing Liu, Renbang Liu, Changqing Xi, Yuansheng Yang
{"title":"Rainbow Domination in Cartesian Product of Paths and Cycles","authors":"Hong Gao, Yunlei Zhang, Yuqi Wang, Yuanyuan Guo, Xing Liu, Renbang Liu, Changqing Xi, Yuansheng Yang","doi":"10.1142/s0129054123500272","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a graph and [Formula: see text] be an integer representing [Formula: see text] colors. There is a function [Formula: see text] from [Formula: see text] to the power set of [Formula: see text] colors satisfying every vertex [Formula: see text] assigned [Formula: see text] under [Formula: see text] in its neighborhood has all the colors, then [Formula: see text] is called a [Formula: see text]-rainbow dominating function ([Formula: see text]RDF) on [Formula: see text]. The weight of [Formula: see text] is the sum of the number of colors on each vertex all over the graph. The [Formula: see text]-rainbow domination number of [Formula: see text] is the minimum weight of [Formula: see text]RDFs on [Formula: see text], denoted by [Formula: see text]. The aim of this paper is to investigate the [Formula: see text]-rainbow ([Formula: see text]) domination number of the Cartesian product of paths [Formula: see text] and the Cartesian product of paths and cycles [Formula: see text]. For [Formula: see text], we determine the value [Formula: see text] and present [Formula: see text] for [Formula: see text]. For [Formula: see text], we determine the values of [Formula: see text] for [Formula: see text] or [Formula: see text] and [Formula: see text] for [Formula: see text] or [Formula: see text].","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":"19 15","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129054123500272","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Let [Formula: see text] be a graph and [Formula: see text] be an integer representing [Formula: see text] colors. There is a function [Formula: see text] from [Formula: see text] to the power set of [Formula: see text] colors satisfying every vertex [Formula: see text] assigned [Formula: see text] under [Formula: see text] in its neighborhood has all the colors, then [Formula: see text] is called a [Formula: see text]-rainbow dominating function ([Formula: see text]RDF) on [Formula: see text]. The weight of [Formula: see text] is the sum of the number of colors on each vertex all over the graph. The [Formula: see text]-rainbow domination number of [Formula: see text] is the minimum weight of [Formula: see text]RDFs on [Formula: see text], denoted by [Formula: see text]. The aim of this paper is to investigate the [Formula: see text]-rainbow ([Formula: see text]) domination number of the Cartesian product of paths [Formula: see text] and the Cartesian product of paths and cycles [Formula: see text]. For [Formula: see text], we determine the value [Formula: see text] and present [Formula: see text] for [Formula: see text]. For [Formula: see text], we determine the values of [Formula: see text] for [Formula: see text] or [Formula: see text] and [Formula: see text] for [Formula: see text] or [Formula: see text].
设[公式:见文本]为图形,[公式:见文本]为表示[公式:见文本]颜色的整数。有一个函数[Formula: see text]从[Formula: see text]到[Formula: see text]颜色的幂集满足在[Formula: see text]下分配的[Formula: see text]的每个顶点[Formula: see text]在它的邻域中具有所有的颜色,那么[Formula: see text]就被称为[Formula: see text]上的[Formula: see text]-彩虹支配函数([Formula: see text]RDF)。[公式:见文本]的权重是图形上每个顶点的颜色数量之和。[公式:见文]的[公式:见文]-彩虹支配数是[公式:见文]上[公式:见文]rdf的最小权值,用[公式:见文]表示。本文的目的是研究路径的笛卡尔积[公式:见文]和路径与循环的笛卡尔积[公式:见文]的[公式:见文]-彩虹([公式:见文])的支配数。对于[Formula: see text],我们确定值[Formula: see text],并为[Formula: see text]呈现[Formula: see text]。对于[公式:见文本],我们为[公式:见文本]或[公式:见文本]确定[公式:见文本]的值,为[公式:见文本]或[公式:见文本]确定[公式:见文本]的值。
期刊介绍:
The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include:
- Algebraic theory of computing and formal systems
- Algorithm and system implementation issues
- Approximation, probabilistic, and randomized algorithms
- Automata and formal languages
- Automated deduction
- Combinatorics and graph theory
- Complexity theory
- Computational biology and bioinformatics
- Cryptography
- Database theory
- Data structures
- Design and analysis of algorithms
- DNA computing
- Foundations of computer security
- Foundations of high-performance computing