Rainbow Domination in Cartesian Product of Paths and Cycles

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Hong Gao, Yunlei Zhang, Yuqi Wang, Yuanyuan Guo, Xing Liu, Renbang Liu, Changqing Xi, Yuansheng Yang
{"title":"Rainbow Domination in Cartesian Product of Paths and Cycles","authors":"Hong Gao, Yunlei Zhang, Yuqi Wang, Yuanyuan Guo, Xing Liu, Renbang Liu, Changqing Xi, Yuansheng Yang","doi":"10.1142/s0129054123500272","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a graph and [Formula: see text] be an integer representing [Formula: see text] colors. There is a function [Formula: see text] from [Formula: see text] to the power set of [Formula: see text] colors satisfying every vertex [Formula: see text] assigned [Formula: see text] under [Formula: see text] in its neighborhood has all the colors, then [Formula: see text] is called a [Formula: see text]-rainbow dominating function ([Formula: see text]RDF) on [Formula: see text]. The weight of [Formula: see text] is the sum of the number of colors on each vertex all over the graph. The [Formula: see text]-rainbow domination number of [Formula: see text] is the minimum weight of [Formula: see text]RDFs on [Formula: see text], denoted by [Formula: see text]. The aim of this paper is to investigate the [Formula: see text]-rainbow ([Formula: see text]) domination number of the Cartesian product of paths [Formula: see text] and the Cartesian product of paths and cycles [Formula: see text]. For [Formula: see text], we determine the value [Formula: see text] and present [Formula: see text] for [Formula: see text]. For [Formula: see text], we determine the values of [Formula: see text] for [Formula: see text] or [Formula: see text] and [Formula: see text] for [Formula: see text] or [Formula: see text].","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129054123500272","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Let [Formula: see text] be a graph and [Formula: see text] be an integer representing [Formula: see text] colors. There is a function [Formula: see text] from [Formula: see text] to the power set of [Formula: see text] colors satisfying every vertex [Formula: see text] assigned [Formula: see text] under [Formula: see text] in its neighborhood has all the colors, then [Formula: see text] is called a [Formula: see text]-rainbow dominating function ([Formula: see text]RDF) on [Formula: see text]. The weight of [Formula: see text] is the sum of the number of colors on each vertex all over the graph. The [Formula: see text]-rainbow domination number of [Formula: see text] is the minimum weight of [Formula: see text]RDFs on [Formula: see text], denoted by [Formula: see text]. The aim of this paper is to investigate the [Formula: see text]-rainbow ([Formula: see text]) domination number of the Cartesian product of paths [Formula: see text] and the Cartesian product of paths and cycles [Formula: see text]. For [Formula: see text], we determine the value [Formula: see text] and present [Formula: see text] for [Formula: see text]. For [Formula: see text], we determine the values of [Formula: see text] for [Formula: see text] or [Formula: see text] and [Formula: see text] for [Formula: see text] or [Formula: see text].
路径与循环笛卡尔积中的彩虹支配
设[公式:见文本]为图形,[公式:见文本]为表示[公式:见文本]颜色的整数。有一个函数[Formula: see text]从[Formula: see text]到[Formula: see text]颜色的幂集满足在[Formula: see text]下分配的[Formula: see text]的每个顶点[Formula: see text]在它的邻域中具有所有的颜色,那么[Formula: see text]就被称为[Formula: see text]上的[Formula: see text]-彩虹支配函数([Formula: see text]RDF)。[公式:见文本]的权重是图形上每个顶点的颜色数量之和。[公式:见文]的[公式:见文]-彩虹支配数是[公式:见文]上[公式:见文]rdf的最小权值,用[公式:见文]表示。本文的目的是研究路径的笛卡尔积[公式:见文]和路径与循环的笛卡尔积[公式:见文]的[公式:见文]-彩虹([公式:见文])的支配数。对于[Formula: see text],我们确定值[Formula: see text],并为[Formula: see text]呈现[Formula: see text]。对于[公式:见文本],我们为[公式:见文本]或[公式:见文本]确定[公式:见文本]的值,为[公式:见文本]或[公式:见文本]确定[公式:见文本]的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Foundations of Computer Science
International Journal of Foundations of Computer Science 工程技术-计算机:理论方法
CiteScore
1.60
自引率
12.50%
发文量
63
审稿时长
3 months
期刊介绍: The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include: - Algebraic theory of computing and formal systems - Algorithm and system implementation issues - Approximation, probabilistic, and randomized algorithms - Automata and formal languages - Automated deduction - Combinatorics and graph theory - Complexity theory - Computational biology and bioinformatics - Cryptography - Database theory - Data structures - Design and analysis of algorithms - DNA computing - Foundations of computer security - Foundations of high-performance computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信