{"title":"Jump-Drop Adjusted Prediction of Cumulative Infected Cases Using the Modified SIS Model","authors":"Rashi Mohta, Sravya Prathapani, Palash Ghosh","doi":"10.1007/s40745-023-00467-3","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate prediction of cumulative COVID-19 infected cases is essential for effectively managing the limited healthcare resources in India. Historically, epidemiological models have helped in controlling such epidemics. Models require accurate historical data to predict future outcomes. In our data, there were days exhibiting erratic, apparently anomalous jumps and drops in the number of daily reported COVID-19 infected cases that did not conform with the overall trend. Including those observations in the training data would most likely worsen model predictive accuracy. However, with existing epidemiological models it is not straightforward to determine, for a specific day, whether or not an outcome should be considered anomalous. In this work, we propose an algorithm to automatically identify anomalous ‘jump’ and ‘drop’ days, and then based upon the overall trend, the number of daily infected cases for those days is adjusted and the training data is amended using the adjusted observations. We applied the algorithm in conjunction with a recently proposed, modified Susceptible-Infected-Susceptible (SIS) model to demonstrate that prediction accuracy is improved after adjusting training data counts for apparent erratic anomalous jumps and drops.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-023-00467-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of cumulative COVID-19 infected cases is essential for effectively managing the limited healthcare resources in India. Historically, epidemiological models have helped in controlling such epidemics. Models require accurate historical data to predict future outcomes. In our data, there were days exhibiting erratic, apparently anomalous jumps and drops in the number of daily reported COVID-19 infected cases that did not conform with the overall trend. Including those observations in the training data would most likely worsen model predictive accuracy. However, with existing epidemiological models it is not straightforward to determine, for a specific day, whether or not an outcome should be considered anomalous. In this work, we propose an algorithm to automatically identify anomalous ‘jump’ and ‘drop’ days, and then based upon the overall trend, the number of daily infected cases for those days is adjusted and the training data is amended using the adjusted observations. We applied the algorithm in conjunction with a recently proposed, modified Susceptible-Infected-Susceptible (SIS) model to demonstrate that prediction accuracy is improved after adjusting training data counts for apparent erratic anomalous jumps and drops.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.